al2o3 nanoparticles
Recently Published Documents


TOTAL DOCUMENTS

737
(FIVE YEARS 322)

H-INDEX

43
(FIVE YEARS 10)

Fuel ◽  
2022 ◽  
Vol 314 ◽  
pp. 123144
Author(s):  
Nur Allif Fathurrahman ◽  
Mohammad Nasikin ◽  
Yoki Yulizar ◽  
Munawar Khalil

2022 ◽  
Vol 46 ◽  
pp. 103878
Author(s):  
Haiwei Yang ◽  
Yahya Ali Rothan ◽  
Saad Althobaiti ◽  
Mahmoud M. Selim

Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 276
Author(s):  
Umair Khan ◽  
Aurang Zaib ◽  
Iskandar Waini ◽  
Anuar Ishak ◽  
El-Sayed M. Sherif ◽  
...  

Colloidal suspensions of regular fluids and nanoparticles are known as nanofluids. They have a variety of applications in the medical field, including cell separation, drug targeting, destruction of tumor tissue, and so on. On the other hand, the dispersion of multiple nanoparticles into a regular fluid is referred to as a hybrid nanofluid. It has a variety of innovative applications such as microfluidics, heat dissipation, dynamic sealing, damping, and so on. Because of these numerous applications of nanofluids in minds, therefore, the objective of the current exploration divulged the axisymmetric radiative flow and heat transfer induced by hybrid nanofluid impinging on a porous stretchable/shrinkable rotating disc. In addition, the impact of Smoluchowski temperature and Maxwell velocity slip boundary conditions are also invoked. The hybrid nanofluid was formed by mixing the copper (Cu) and alumina (Al2O3) nanoparticles scattered in the regular (viscous) base fluid (H2O). Similarity variables are used to procure the similarity equations, and the numerical outcomes are achieved using bvp4c in MATLAB software. According to the findings, double solutions are feasible for stretching (λ>0) and shrinking cases (λ<0). The heat transfer rate is accelerated as the hybrid nanoparticles increases. The suction parameter enhances the friction factors as well as heat transfer rate. Moreover, the friction factor in the radial direction and heat transfer enrich for the first solution and moderate for the second outcome due to the augmentation δ1, while the trend of the friction factor in the radial direction is changed only in the case of stretching for both branches.


Author(s):  
Ghazal Tofighi ◽  
Henning Lichtenberg ◽  
Abhijeet Gaur ◽  
Wu Wang ◽  
Stefan Wild ◽  
...  

CuO/ZnO/Al2O3 catalysts were continuously synthesized in a microfluidic reactor, analyzed by X-ray diffraction (XRD), physisorption (BET), chemisorption, electron microscopy and X-ray absorption spectroscopy (XAS), and tested for methanol synthesis from...


2021 ◽  
Vol 21 (4) ◽  
pp. 302-319
Author(s):  
Mahdi M. S. Shareef ◽  
Ahmed Naif Al-Khazraji ◽  
Samir Ali Amin

In this paper, functionally graded polymer hybrid nanocomposites have been produced by silica (SiO2) nanoparticles and alumina (Al2O3) nanoparticles distributed in a matrix of epoxy during the ultra-sonication via hand lay-up method. The variation in nanoparticles volume fraction (Vf.) has been given in the thickness direction for reaching the gradation. Each layer has a thickness of 1.2 mm through various concentrations of nanoparticles and is sequentially cast in acrylic moulds to fabricate the graded composite sheet with a 6 mm thickness. To fabricate the functionally graded layers, various concentrations of different nanoparticles (1.5% SiO2, 1% SiO2, epoxy, 2% Al2O3 and 3% Al2O3) have been used for tensile and compressive testing each isotropic layer of functionally graded material (FGM). The mechanical property that was studied for pure epoxy, isotropic and FGM was the flexural resistance. The flexural properties of FGM, isotropic nanocomposite (1% SiO2 + 2% Al2O3) and pristine epoxy, for evaluating their mechanical properties, including flexural stress-strain criteria and flexural Young's modulus, were determined via a Three-point bending test, with loading from the side of silica and alumina for the hybrid-FGM and at one side for the isotropic hybrid nanocomposite and pristine epoxy. The mechanical properties (tensile and compression) and the density of every layer were obtained for the epoxy resin and nanocomposites. They can benefit from the Finite Element Analysis (FEA) of the Three-point bending test via the Design Modeler (ANSYS workbench). The results of experiments were confirmed via building a detailed 3D FE model. Also, the advanced deformation results from the FE model were found in good agreement with the experimental outcomes.


Sign in / Sign up

Export Citation Format

Share Document