solid lubricant
Recently Published Documents


TOTAL DOCUMENTS

780
(FIVE YEARS 168)

H-INDEX

44
(FIVE YEARS 8)

2022 ◽  
Vol 1049 ◽  
pp. 130-137
Author(s):  
Natalia Antonova

New porous films based on polyanionic cellulose with AlOOH nanoparticles have been developed. The morphology of the films has been studied by electron microscopy: the size of the formed pores is 1000-500 microns; the total surface porosity of the films is 30%. Using infrared microscopy, it was shown that during the formation of porous films, their chemical composition remains unchanged. Differential scanning calorimetry was used to determine the threshold for thermal destruction of porous films: 306 С. The possibility of using the obtained materials as antifriction coatings when filling the pores with solid lubricant MoS2 is considered. It is shown that for a steel sample protected by a porous coating with MoS2, the friction coefficient decreases by 50% compared to the friction coefficient for a steel surface under a load of up to 450 MPa.


2022 ◽  
Vol 1049 ◽  
pp. 144-151
Author(s):  
Oksana Timokhova ◽  
Dmitry Shakirzyanov ◽  
Roman Timokhov

Coatings obtained by spraying materials with a high-temperature gas jet onto a substrate followed by thermal treatment of the deposited materials (thermal gas coatings) are increasingly being used. The practical experience of using thermal spray coatings, accumulated over the past 20–30 years in industries, shows that in this way it is possible, as a rule, to reduce the wear of machine parts operating under various conditions by a factor of 2–5. The effectiveness of the technology has also been proven in the protection of products from corrosion and thermal damage. The efficiency of the applied materials is determined by their structure, which largely depends on the choice of the composition of the material, the method, and modes of application. A comprehensive solution to these issues with the study of the mechanism of the processes of formation of thermal gas coatings will create a scientific basis for the technology for its successful implementation in production. At the same time, the importance of studying the processes and optimizing the technological parameters of spraying and subsequent coating treatment increases. Optimization is carried out, as a rule, according to the results of experiments. Let us consider the study on the example of the development of wear-resistant composite coatings with solid lubricant inclusions with the substantiation of the technique and criteria for optimizing technological parameters taking into account the most important properties of sprayed protective coatings.


Author(s):  
RB Jivan ◽  
M Eskandarzade ◽  
SR Bewsher ◽  
M Leighton ◽  
M Mohammadpour ◽  
...  

Manufacturing processes are usually energy intensive, contributing to the global carbon dioxide emissions. Deep Drawing is one of the most common types of sheet metal forming processes with great potential for energy efficiency improvement. In this paper, the optimised combination of molybdenum disulphide (MoS2) and graphite is proposed as a solid lubricant to reduce the punching force and energy consumption of deep drawing process. Different mixtures of MoS2 and graphite are prepared and their tribological performance are measured using experimental tests on tribometer. In order to investigate the friction reduction rate in deep drawing process, finite element simulation of the drawing process is performed. Results show that friction reduction using proposed combination of lubricants has significant effect on punching force and would provide greater process efficiency.


Author(s):  
Wolfgang Tillmann ◽  
Alexandra Wittig ◽  
Dominic Stangier ◽  
Carl-Arne Thomann ◽  
Jörg Debus ◽  
...  

AbstractModifying MoS2 thin films by additional elements shows great potential in order to adjust the property profile and to meet the increasing requirements regarding high wear resistance and low friction properties of industrial components. Within that context, MoSx:N:Mo thin films were deposited by a reactive hybrid dcMS/HiPIMS process. By systematically increasing the Mo target cathode power, an investigation of the structural and the mechanical properties was conducted to understand the evolution of the tribological behavior. A low Mo target cathode power of 1 kW is related to the formation of the preferential (002) MoS2 basal-plane and thus a low friction with µ = 0.2. With an increasing amount of Mo, the film loses its solid lubricant MoS2 properties and a nitride constitution of the thin film is developing due to the formation of crystalline Mo and MoN phases. Related to this transformation, the hardness and elastic modulus are increased, but the adhesion and the tribological properties are impaired. The film loses its plasticity and the generated film material is directly removed from the contact area during the sliding contact.


2021 ◽  
Vol 41 (12) ◽  
pp. 1179-1182
Author(s):  
V. A. Panaioti ◽  
S. S. Zhluktov ◽  
E. V. Kopytova ◽  
A. M. Petukhov

2021 ◽  
pp. 139767
Author(s):  
Guiye Yang ◽  
Yu Zhang ◽  
Zhikun Guo ◽  
Chenyang Zhao ◽  
Xiaoming Bai ◽  
...  

2021 ◽  
Vol 25 ◽  
pp. 101202
Author(s):  
Max Marian ◽  
Klara Feile ◽  
Benedict Rothammer ◽  
Marcel Bartz ◽  
Sandro Wartzack ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document