Optimising and investigating the effect of leaf area index, soil depth, and water content on energy conservation and pollutant reduction in green roof systems (case study: Mashhad city)

Author(s):  
Hossein Kazemian ◽  
Javad Abdollahi ◽  
Mohsen Karrabi ◽  
Mohammad Reza Seyedabadi
2021 ◽  
Vol 128 ◽  
pp. 107841
Author(s):  
Jan-Peter George ◽  
Wei Yang ◽  
Hideki Kobayashi ◽  
Tobias Biermann ◽  
Arnaud Carrara ◽  
...  

Author(s):  
Alkan Günlü ◽  
Sedat Keleş ◽  
İlker Ercanlı ◽  
Muammer Şenyurt

2018 ◽  
Vol 64 (No. 11) ◽  
pp. 455-468
Author(s):  
Jakub Černý ◽  
Jan Krejza ◽  
Radek Pokorný ◽  
Pavel Bednář

Fast and precise leaf area index (LAI) estimation of a forest stand is frequently needed for a wide range of ecological studies. In the presented study, we compared side-by-side two instruments for performing LAI estimation (i.e. LaiPen LP 100 as a “newly developed device” and LAI-2200 PCA as the “world standard”), both based on indirect optical methods for performing LAI estimation in pure Norway spruce (Picea abies (Linnaeus) H. Karsten) stands under different thinning treatments. LAI values estimated by LaiPen LP 100 were approximate 5.8% lower compared to those measured by LAI-2200 PCA when averaging all collected data regardless of the thinning type. Nevertheless, when we considered the differences among LAI values at each measurement point within a regular grid, LaiPen LP 100 overestimated LAI values compared to those from LAI-2200 PCA on average by 1.4%. Therefore, both instruments are comparable. Similar LAI values between thinning from above (A) and thinning from below (B) approaches were indirectly detected by both instruments. The highest values of canopy production index and leaf area efficiency were observed within the stand thinned from above (plot A).


Water ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 6 ◽  
Author(s):  
Milad Mahmoodzadeh ◽  
Phalguni Mukhopadhyaya ◽  
Caterina Valeo

A comprehensive parametric analysis was conducted to evaluate the influence of the green roof design parameters on the thermal or energy performance of a secondary school building in four distinctively different climate zones in North America (i.e., Toronto, ON, Canada; Vancouver, BC, Canada; Las Vegas, NV, USA and Miami, FL, USA). Soil moisture content, soil thermal properties, leaf area index, plant height, leaf albedo, thermal insulation thickness and soil thickness were used as design variables. Optimal parameters of green roofs were found to be functionally related to meteorological conditions in each city. In terms of energy savings, the results showed that the light-weight substrate had better thermal performance for the uninsulated green roof. Additionally, the recommended soil thickness and leaf area index for all four cities were 15 cm and 5 respectively. The optimal plant height for the cooling dominated climates is 30 cm and for the heating dominated cities is 10 cm. The plant albedo had the least impact on the energy consumption while it was effective in mitigating the heat island effect. Finally, unlike the cooling load, which was largely influenced by the substrate and vegetation, the heating load was considerably affected by the thermal insulation instead of green roof design parameters.


Sign in / Sign up

Export Citation Format

Share Document