Neurological examination lab during SARS-CoV-2 Pandemic: an experience from Humanitas University, Milan, Italy.

2022 ◽  
Vol 1 (1) ◽  
pp. 1
Author(s):  
Silvia Oldani ◽  
Licia Montagna ◽  
Valeriano Vinci ◽  
Matteo Biroli
2021 ◽  
Vol 14 (7) ◽  
pp. e243459
Author(s):  
Matthew McWilliam ◽  
Michael Samuel ◽  
Fadi Hasan Alkufri

A 61-year-old man with no significant medical history developed fever, headache and mild shortness of breath. He tested positive for SARS-CoV-2 and self-isolated at home, not requiring hospital admission. One week after testing positive, he developed acute severe burning pain affecting his whole body, subsequently localised distally in the limbs. There was no ataxia or autonomic failure. Neurological examination was unremarkable. Electrophysiological tests were unremarkable. Skin biopsy, lumbar puncture, enhanced MRI of the brachial plexus and MRI of the neuroaxis were normal. His pain was inadequately controlled with pregabalin but improved while on a weaning regimen of steroids. This case highlights the variety of possible symptoms associated with SARS-CoV-2 infection.


2021 ◽  
Vol 14 ◽  
pp. 175628642110043
Author(s):  
Nadine Egenolf ◽  
Caren Meyer zu Altenschildesche ◽  
Luisa Kreß ◽  
Katja Eggermann ◽  
Barbara Namer ◽  
...  

Background and aims: Small fiber neuropathy (SFN) is increasingly suspected in patients with pain of uncertain origin, and making the diagnosis remains a challenge lacking a diagnostic gold standard. Methods: In this case–control study, we prospectively recruited 86 patients with a medical history and clinical phenotype suggestive of SFN. Patients underwent neurological examination, quantitative sensory testing (QST), and distal and proximal skin punch biopsy, and were tested for pain-associated gene loci. Fifty-five of these patients additionally underwent pain-related evoked potentials (PREP), corneal confocal microscopy (CCM), and a quantitative sudomotor axon reflex test (QSART). Results: Abnormal distal intraepidermal nerve fiber density (IENFD) (60/86, 70%) and neurological examination (53/86, 62%) most frequently reflected small fiber disease. Adding CCM and/or PREP further increased the number of patients with small fiber impairment to 47/55 (85%). Genetic testing revealed potentially pathogenic gene variants in 14/86 (16%) index patients. QST, QSART, and proximal IENFD were of lower impact. Conclusion: We propose to diagnose SFN primarily based on the results of neurological examination and distal IENFD, with more detailed phenotyping in specialized centers.


Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1427
Author(s):  
Paula Sobral da Silva ◽  
Sophie Eickmann ◽  
Ricardo Ximenes ◽  
Celina Martelli ◽  
Elizabeth Brickley ◽  
...  

The relation of Zika virus (ZIKV) with microcephaly is well established. However, knowledge is lacking on later developmental outcomes in children with evidence of maternal ZIKV infection during pregnancy born without microcephaly. The objective of this analysis is to investigate the impact of prenatal exposure to ZIKV on neuropsychomotor development in children without microcephaly. We evaluated 274 children including 235 ZIKV exposed and 39 controls using the Bayley-III Scales of Infant and Toddler Development (BSIDIII) and neurological examination. We observed a difference in cognition with a borderline p-value (p = 0.052): 9.4% of exposed children and none of the unexposed control group had mild to moderate delays. The prevalence of delays in the language and motor domains did not differ significantly between ZIKV-exposed and unexposed children (language: 12.3% versus 12.8%; motor: 4.7% versus 2.6%). Notably, neurological examination results were predictive of neurodevelopmental delays in the BSIDIII assessments for exposed children: 46.7% of children with abnormalities on clinical neurological examination presented with delay in contrast to 17.8% among exposed children without apparent neurological abnormalities (p = 0.001). Overall, our findings suggest that relative to their unexposed peers, ZIKV-exposed children without microcephaly are not at considerably increased risk of neurodevelopmental impairment in the first 42 months of life, although a small group of children demonstrated higher frequencies of cognitive delay. It is important to highlight that in the group of exposed children, an abnormal neuroclinical examination may be a predictor of developmental delay. The article contributes to practical guidance and advances our knowledge about congenital Zika.


Author(s):  
Mariam Al Hussona ◽  
Monica Maher ◽  
David Chan ◽  
Jonathan A. Micieli ◽  
Jennifer D. Jain ◽  
...  

ABSTRACTObjective:To outline features of the neurologic examination that can be performed virtually through telemedicine platforms (the virtual neurological examination [VNE]), and provide guidance for rapidly pivoting in-person clinical assessments to virtual visits during the COVID-19 pandemic and beyond.Methods:The full neurologic examination is described with attention to components that can be performed virtually.Results:A screening VNE is outlined that can be performed on a wide variety of patients, along with detailed descriptions of virtual examination maneuvers for specific scenarios (cognitive testing, neuromuscular and movement disorder examinations).Conclusions:During the COVID-19 pandemic, rapid adoption of virtual medicine will be critical to provide ongoing and timely neurological care. Familiarity and mastery of a VNE will be critical for neurologists, and this article outlines a practical approach to implementation.


2011 ◽  
Vol 11 (03) ◽  
pp. 471-513 ◽  
Author(s):  
ROBERT LEMOYNE ◽  
TIMOTHY MASTROIANNI ◽  
CRISTIAN COROIAN ◽  
WARREN GRUNDFEST

The deep tendon reflex is a fundamental aspect of a neurological examination. The two major parameters of the tendon reflex are response and latency, which are presently evaluated qualitatively during a neurological examination. The reflex loop is capable of providing insight into the status and therapy response of both upper and lower motor neuron syndromes. Attempts have been made to ascertain reflex response and latency; however, these systems are relatively complex, resource intensive, with issues of consistent and reliable accuracy. The solution presented is a wireless quantified reflex device using tandem three-dimensional (3D) wireless accelerometers to obtain response based on acceleration waveform amplitude and latency derived from temporal acceleration waveform disparity. Three specific aims have been established for the proposed wireless quantified reflex device: (1) Demonstrate the wireless quantified reflex device is reliably capable of ascertaining quantified reflex response and latency using a quantified input. (2) Evaluate the precision of the device using an artificial reflex system. (3) Conduct a longitudinal study respective of subjects with healthy patellar tendon reflexes, using the wireless quantified reflex evaluation device to obtain quantified reflex response and latency. Aim 1 has led to a steady evolution of the wireless quantified reflex device from a singular 2D wireless accelerometer capable of measuring reflex response to a tandem 3D wireless accelerometer capable of reliably measuring reflex response and latency. The hypothesis for aim 1 is that a reflex quantification device can be established for reliably measuring reflex response and latency for the patellar tendon reflex, comprised of an integrated system of wireless 3D MEMS accelerometers. Aim 2 further emphasized the reliability of the wireless quantified reflex device by evaluating an artificial reflex system. The hypothesis for aim 2 is that the wireless quantified reflex device can obtain reliable reflex parameters (response and latency) from an artificial reflex device. Aim 3 synthesizes the findings relevant to aim 1 and 2, while applying the wireless accelerometer reflex quantification device to a longitudinal study of healthy patellar tendon reflexes. The hypothesis for aim 3 is that during a longitudinal evaluation of the deep tendon reflex the parameters for reflex response and latency can be measured with a considerable degree of accuracy, reliability, and reproducibility. Enclosed is a detailed description of a wireless quantified reflex device with research findings and potential utility of the system, inclusive of a comprehensive description of tendon reflexes, prior reflex quantification systems, and correlated applications.


2016 ◽  
Vol 7 (6) ◽  
pp. 151-153
Author(s):  
Dinesh Ganapathy ◽  
Jasmohan S. Bajaj

Sign in / Sign up

Export Citation Format

Share Document