Study of AA-1050 sheet metal parts processed by single point incremental forming with dummy sheet

Author(s):  
Shailendra Kumar ◽  
Vikas Sisodia
2009 ◽  
Vol 623 ◽  
pp. 37-48 ◽  
Author(s):  
Steeve Dejardin ◽  
Jean Claude Gelin ◽  
Sebastien Thibaud

The paper is related to the analysis of shape distortions and springback effects arising in Single Point Incremental Forming. An experimental set up has been designed and manufactured to carry single point incremental forming on small size sheet metal parts. The experimental set up is mounted on 3-axes CNC milling machine tool and the forming tool is attached and move with the spindle. Experiments have been carried out on sheet metal parts to obtain tronconical shapes. The forming strategy associated to the movement of the forming tool has been also investigated. The experiments indicate that shape distortions arising in the corners of the tronconical shape are clearly related to forming strategy. The springback of rings cut in the tronconical parts have been also investigated. It is shown that positive or negative springback could be also related to forming strategy. In order to enhance experimental investigations, Finite Element simulations of the incremental sheet forming have been performed. Results obtained from the simulations prove that if boundary conditions and forming strategy carefully are taking into account, the finite elements results are in good agreement with experiments. So it is then possible to use FEM as a design tool for incremental sheet forming.


CIRP Annals ◽  
2005 ◽  
Vol 54 (2) ◽  
pp. 88-114 ◽  
Author(s):  
J. Jeswiet ◽  
F. Micari ◽  
G. Hirt ◽  
A. Bramley ◽  
J. Duflou ◽  
...  

2021 ◽  
Vol 343 ◽  
pp. 04007
Author(s):  
Mihai Popp ◽  
Gabriela Rusu ◽  
Sever-Gabriel Racz ◽  
Valentin Oleksik

Single point incremental forming is one of the most intensely researched die-less manufacturing process. This process implies the usage of a CNC equipment or a serial robot which deforms a sheet metal with the help of a relatively simple tool that follows an imposed toolpath. As every cold metal forming process, besides the many given advantages it has also some drawbacks. One big drawback in comparison with other cold metal forming processes is the low accuracy of the deformed parts. The aim of this research is to investigate the sheet metal bending mechanism through finite element method analysis. The results shows that the shape of the retaining rings has a big influence over the final geometrical accuracy of the parts manufactured through single point incremental forming.


2019 ◽  
Vol 957 ◽  
pp. 156-166 ◽  
Author(s):  
Mihai Crenganis ◽  
Akos Csiszar

The paper presents the development of a dynamic model for the KUKA KR6 robot during single point incremental forming (SPIF) of metal sheets. The dynamic model of the KUKA KR6 robot is created in MATLAB®-SimMechanics. This dynamic model is necessary to verify that the mechanical structure of this low payload industrial robot of 36 Kg capacity can withstand some specific forces in incremental forming of some low plasticity alloys like Ti6Al4V. In the Centre of Studies and Research for Plastic Deformations of "Lucian Blaga" University of Sibiu, different attempts on single point incremental forming of thin metal sheets have been carried out and some of the studies are based on SPIF using the KUKA KR6-2 industrial robot. Nevertheless, the previous experimental attempts using the KUKA KR 6-2 robot in SPIF processes were realised only on 0.4 mm thick DC04 steel sheets. This material has very good deformability properties and the forces during the process are relatively small. After the dynamic model validation some specific circular trajectories are imposed and the forces that can appear during SPIF process for Ti6Al4V alloy sheets are taken into consideration. After forces analysis, it was concluded that the KUKA KR6 robot can be used in single point incremental forming processes for metal parts requiring greater forming forces.


2011 ◽  
Vol 120 ◽  
pp. 94-101
Author(s):  
Gang Liu

First of all, the theory and application of the Single Point Incremental Forming (SPIF) technology of sheet metal are introduced at the beginning of this paper; second, several traditional forming technologies of channel mill’s top shell are compared; third, The advantages of SPIF Technology of Sheet Metal in channel mill’s top shell prototyping are analyzed; finally, the steps and methods of channel mill’s top shell design and prototyping with SPIF technology are elaborated through a real business case.


Sign in / Sign up

Export Citation Format

Share Document