A Dynamic Model for KUKA KR6 in SPIF Processes

2019 ◽  
Vol 957 ◽  
pp. 156-166 ◽  
Author(s):  
Mihai Crenganis ◽  
Akos Csiszar

The paper presents the development of a dynamic model for the KUKA KR6 robot during single point incremental forming (SPIF) of metal sheets. The dynamic model of the KUKA KR6 robot is created in MATLAB®-SimMechanics. This dynamic model is necessary to verify that the mechanical structure of this low payload industrial robot of 36 Kg capacity can withstand some specific forces in incremental forming of some low plasticity alloys like Ti6Al4V. In the Centre of Studies and Research for Plastic Deformations of "Lucian Blaga" University of Sibiu, different attempts on single point incremental forming of thin metal sheets have been carried out and some of the studies are based on SPIF using the KUKA KR6-2 industrial robot. Nevertheless, the previous experimental attempts using the KUKA KR 6-2 robot in SPIF processes were realised only on 0.4 mm thick DC04 steel sheets. This material has very good deformability properties and the forces during the process are relatively small. After the dynamic model validation some specific circular trajectories are imposed and the forces that can appear during SPIF process for Ti6Al4V alloy sheets are taken into consideration. After forces analysis, it was concluded that the KUKA KR6 robot can be used in single point incremental forming processes for metal parts requiring greater forming forces.

2016 ◽  
Vol 19 (3) ◽  
Author(s):  
CRINA RADU ◽  
EUGEN HERGHELEGIU ◽  
ION CRISTEA ◽  
CAROL SCHNAKOVSZKY

<p>The aim of the current work was to analyse the influence of the process parameters (tool diameter, size of the vertical step of tool, feed rate and spindle speed) on the quality of the processed surface, expressed in terms of roughness and macrostructure in the case of parts processed by single point incremental forming. The analysis was made on A1050 aluminium metal sheets. The obtained results revealed that the process parameters influence differently the surface quality, the worst influence being exerted by the increase of the vertical step of tool. </p>


2013 ◽  
Vol 371 ◽  
pp. 148-152 ◽  
Author(s):  
Crina Radu ◽  
Eugen Herghelegiu ◽  
Nicolae Catalin Tampu ◽  
Ion Cristea

Single point incremental forming (SPIF) is a process during which at any moment a very small part of the sample is actually being formed. This progressive highly localised deformation is performed by a simple tool, whose trajectory is numerical controlled by a CNC machine. Since no support for the metal sheet is used during forming, large levels of deformation occur, which in turn, induce highly non-uniform residual stresses that affect the accuracy of the processed parts. The aim of the present paper was to inspect, experimentally and by simulation, the state of the residual stresses induced in SPIFed double frustums of pyramids made by A1050. The hole drilling method was used for the experimental measurements and the LS-Dyna software for simulation.


2013 ◽  
Vol 554-557 ◽  
pp. 2293-2298
Author(s):  
Gabriel Centeno ◽  
Isabel Bagudanch ◽  
María Luisa García-Romeu ◽  
Andrés Jesús Martínez-Donaire ◽  
Carpóforo Vallellano

In this paper the influence of the bending effect in the formability of AISI 304 metal sheets in incremental forming is analyzed. For this purpose, a series of single point incremental forming tests were carried out using a variety of tool diameters and step downs. The spifability (formability in single point incremental sheet forming) of the metal sheets was studied in the light of circle grid analysis by means of the 3D deformation digital measurement system ARGUS®. The results show the importance of the bending effect, induced by the tool radius, in the enhancement of formability in incremental forming compared to conventional forming processes.


2021 ◽  
Vol 5 (4) ◽  
pp. 140
Author(s):  
Valentino A. M. Cristino ◽  
João P. M. Pragana ◽  
Ivo M. F. Bragança ◽  
Carlos M. A. Silva ◽  
Paulo A. F. Martins

This paper is focused on the hybridization of additive manufacturing with single-point incremental forming to produce stiffening grooves in thin metal parts. An analytical model built upon in-plane stretching of a membrane is provided to determine the tool force as a function of the required groove depth and to estimate the maximum allowable groove depth that can be formed without tearing. The results for additively deposited stainless-steel sheets show that the proposed analytical model can replicate incremental plastic deformation of the stiffening grooves in good agreement with experimental observations and measurements. Anisotropy and lower formability caused by the dendritic-based microstructure of the additively deposited stainless-steel sheets justifies the reason why the maximum allowable depth of the stiffening grooves is approximately 27% smaller than that obtained for the wrought commercial sheets of the same material that are used for comparison purposes.


Sign in / Sign up

Export Citation Format

Share Document