Forecasting foreign exchange rates using artificial neural networks: a trader's approach

2012 ◽  
Vol 5 (4) ◽  
pp. 370 ◽  
Author(s):  
Adam Stokes ◽  
Ahmed S. Abou Zaid
2005 ◽  
Vol 01 (01) ◽  
pp. 79-107 ◽  
Author(s):  
MAK KABOUDAN

Applying genetic programming and artificial neural networks to raw as well as wavelet-transformed exchange rate data showed that genetic programming may have good extended forecasting abilities. Although it is well known that most predictions of exchange rates using many alternative techniques could not deliver better forecasts than the random walk model, in this paper employing natural computational strategies to forecast three different exchange rates produced two extended forecasts (that go beyond one-step-ahead) that are better than naïve random walk predictions. Sixteen-step-ahead forecasts obtained using genetic programming outperformed the one- and sixteen-step-ahead random walk US dollar/Taiwan dollar exchange rate predictions. Further, sixteen-step-ahead forecasts of the wavelet-transformed US dollar/Japanese Yen exchange rate also using genetic programming outperformed the sixteen-step-ahead random walk predictions of the exchange rate. However, random walk predictions of the US dollar/British pound exchange rate outperformed all forecasts obtained using genetic programming. Random walk predictions of the same three exchange rates employing raw and wavelet-transformed data also outperformed all forecasts obtained using artificial neural networks.


Author(s):  
WEI HUANG ◽  
K. K. LAI ◽  
Y. NAKAMORI ◽  
SHOUYANG WANG

Forecasting exchange rates is an important financial problem that is receiving increasing attention especially because of its difficulty and practical applications. Artificial neural networks (ANNs) have been widely used as a promising alternative approach for a forecasting task because of several distinguished features. Research efforts on ANNs for forecasting exchange rates are considerable. In this paper, we attempt to provide a survey of research in this area. Several design factors significantly impact the accuracy of neural network forecasts. These factors include the selection of input variables, preparing data, and network architecture. There is no consensus about the factors. In different cases, various decisions have their own effectiveness. We also describe the integration of ANNs with other methods and report the comparison between performances of ANNs and those of other forecasting methods, and finding mixed results. Finally, the future research directions in this area are discussed.


Sign in / Sign up

Export Citation Format

Share Document