Fractional order active disturbance rejection control for trajectory tracking for 4-DOF serial link manipulator

Author(s):  
Raouf Fareh ◽  
Mahmoud Abdallah
Author(s):  
Sumit Aole ◽  
Irraivan Elamvazuthi ◽  
Laxman Waghmare ◽  
Balasaheb Patre ◽  
Fabrice Meriaudeau

Trajectory tracking in upper limb rehabilitation exercises is utilized for repeatability of joint movement to improve the patient’s recovery in the early stages of rehabilitation. In this article, non-linear active disturbance rejection control as a combination of non-linear extended-state observer and non-linear state error feedback is used for the sinusoidal trajectory tracking control of the two-link model of an upper limb rehabilitation exoskeleton. The two links represent movements like flexion/extension for both the shoulder joint and the elbow joint in the sagittal plane. The Euler–Lagrange method was employed to acquire a dynamic model of an upper limb rehabilitation exoskeleton. To examine the efficacy and robustness of the proposed method, four disturbances cases in simulation studies with 20% parameter variation were applied. It was found that the non-linear active disturbance rejection control is robust against disturbances and achieves better tracking as compared to proportional–integral–derivative and existing conventional active disturbance rejection control method.


Author(s):  
Mario Ramírez-Neria ◽  
Hebertt Sira-Ramírez ◽  
Rubén Garrido-Moctezuma ◽  
Alberto Luviano-Juárez

In this paper, a systematic procedure for controller design is proposed for a class of nonlinear underactuated systems (UAS), which are non-feedback linearizable but exhibit a controllable (flat) tangent linearization around an equilibrium point. Linear extended state observer (LESO)-based active disturbance rejection control (ADRC) is shown to allow for trajectory tracking tasks involving significantly far excursions from the equilibrium point. This is due to local approximate estimation and compensation of the nonlinearities neglected by the linearization process. The approach is typically robust with respect to other endogenous and exogenous uncertainties and disturbances. The flatness of the tangent model provides a unique structural property that results in an advantageous low-order cascade decomposition of the LESO design, vastly improving the attenuation of noisy and peaking components found in the traditional full order, high gain, observer design. The popular ball and beam system (BBS) is taken as an application example. Experimental results show the effectiveness of the proposed approach in stabilization, as well as in perturbed trajectory tracking tasks.


2022 ◽  
Vol 70 (3) ◽  
pp. 5133-5142
Author(s):  
Ibrahim M. Mehedi ◽  
Rachid Mansouri ◽  
Ubaid M. Al-Saggaf ◽  
Ahmed I. M. Iskanderani ◽  
Maamar Bettayeb ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Bingyu Li ◽  
Jining Guo ◽  
Ying Fu

Induction heating systems are characterized by model uncertainty, nonlinearity, and external disturbances, and the control accuracy of the system directly affects the performance of the heated workpiece. In order to improve the temperature control accuracy and anti-interference performance of induction heating systems, this paper proposes a composite control strategy combining fractional-order PID (FOPID) and active disturbance rejection control (ADRC). Meanwhile, for the problem of too many controller tuning parameters, an improved quantum behavior particle swarm optimization (QPSO) algorithm is used to transform the nine parameters to be tuned in fractional-order PID active disturbance rejection control (FOPID-ADRC) into a minimization value optimization problem for solving. The simulation results show that the FOPID-ADRC controller improves the anti-interference capability and control accuracy of the temperature control system, and the improved QPSO algorithm has better global search capability and local optimal adaptation value.


Sign in / Sign up

Export Citation Format

Share Document