Service pricing and customer behaviour strategies of Stackelberg's equilibrium in an unobservable Markovian queue with unreliable server and delayed repairs

Author(s):  
Mohammed Said Radjef ◽  
Fazia RAHMOUNE ◽  
Kamel MEZIANI
Author(s):  
Kamel Meziani ◽  
Fazia RAHMOUNE ◽  
Mohammed Said RADJEF

A Stackelberg game is used to study the service pricing and the strategic behavior of customers in an unreliable and totally unobservable M/M/1 queue under a reward-cost structure. At the first stage, the server manager, acting as a leader, chooses a service price and, at the second stage, a customer, arriving at the system and acting as a follower, chooses to join the system or an outside opportunity, knowing only the service price imposed by the server manager and the system parameters. We show that the constructed game admits an equilibrium and we give explicit forms of server manager and customers equilibrium behavioral strategies.  The results of the proposed model show that the assumption that customers are risk-neutral is fundamental for the standard approach usually used. Moreover, we determine the socially optimal price that maximizes the social welfare and we compare it to the Stackelberg equilibrium. We illustrate, by numerical examples, the effect of some system parameters on the equilibrium service price and the revenue of the server manager.


1981 ◽  
Vol 18 (01) ◽  
pp. 190-203 ◽  
Author(s):  
Guy Latouche

A queueing system with exponential service and correlated arrivals is analysed. Each interarrival time is exponentially distributed. The parameter of the interarrival time distribution depends on the parameter for the preceding arrival, according to a Markov chain. The parameters of the interarrival time distributions are chosen to be equal to a common value plus a factor ofε, where ε is a small number. Successive arrivals are then weakly correlated. The stability condition is found and it is shown that the system has a stationary probability vector of matrix-geometric form. Furthermore, it is shown that the stationary probabilities for the number of customers in the system, are analytic functions ofε, for sufficiently smallε, and depend more on the variability in the interarrival time distribution, than on the correlations.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1299
Author(s):  
Shengli Lv

This paper analyzed the multi-machine repairable system with one unreliable server and one repairman. The machines may break at any time. One server oversees servicing the machine breakdown. The server may fail at any time with different failure rates in idle time and busy time. One repairman is responsible for repairing the server failure; the repair rate is variable to adapt to whether the machines are all functioning normally or not. All the time distributions are exponential. Using the quasi-birth-death(QBD) process theory, the steady-state availability of the machines, the steady-state availability of the server, and other steady-state indices of the system are given. The transient-state indices of the system, including the reliability of the machines and the reliability of the server, are obtained by solving the transient-state probabilistic differential equations. The Laplace–Stieltjes transform method is used to ascertain the mean time to the first breakdown of the system and the mean time to the first failure of the server. The case analysis and numerical illustration are presented to visualize the effects of the system parameters on various performance indices.


Sign in / Sign up

Export Citation Format

Share Document