Simulation of a phase change material for an automotive thermal insulation system

Author(s):  
Andres P. Mendez ◽  
Javier Martínez Gómez ◽  
Juan Francisco Nicolalde
2017 ◽  
Vol 9 ◽  
pp. 59-68 ◽  
Author(s):  
Ali Kazemi ◽  
Iman Naseri ◽  
Mina Nasiri ◽  
Ahmad Reza Bahramian

2020 ◽  
Vol 307 ◽  
pp. 01024
Author(s):  
Nisrine Hanchi ◽  
Hamid Hamza ◽  
Rabiaa Idmoussa ◽  
Jawad Lahjomri ◽  
Abdelaziz Oubarra

The aim of this work is to study the combined insertion effect of Phase Change Materials (PCM) and thermal insulation within a partition wall separating a conditioned room from an adjacent local which is under a periodic thermal activity. This is done by a comparative study with a reference wall under the same thermal conditions. The comparison criterion is the energy density transmitted to the local conditioned in established regime. The results show that the inclusion of thermal insulation and phase change material provides a significant reduction of energy consumption of the conditioned local; thereby a judicious choice of phase change material with thermal level and range melting temperature reduces further this reduction.


Author(s):  
Mohammad Parsazadeh ◽  
Xili Duan

Flow assurance is critical in offshore oil and gas production. Thermal insulation is an effective way to reduce heat loss from subsea pipelines and avoid the formation of hydrates or wax deposits that could block the flowlines. This paper presents a hybrid thermal insulation model with a combination of phase change material (PCM) and conventional insulating layers. The idea is to use PCM to store thermal energy with normal oil and gas production and release heat back to the fluids during a shut-in operation. Melting and solidification of the PCM layer is analyzed for different thicknesses at both working and shut-in conditions. The model is developed numerically using a Finite Volume Method (FVM) and an enthalpy porosity technique. It accounts for heat conduction with liquid-solid phase changes, as well as natural convection in the PCM. In this study, paraffin is implemented as PCM with temperature dependent properties while Aerogel is used as the conventional insulation layer. The results show that ticker PCM layer than conventional insulating layer can significantly improve thermal insulation performance, with extended cool-down time during flow line shut in.


Sign in / Sign up

Export Citation Format

Share Document