A promising form-stable phase change material composed of C/SiO2 aerogel and palmitic acid with large latent heat as short-term thermal insulation

Energy ◽  
2020 ◽  
Vol 210 ◽  
pp. 118478
Author(s):  
Jie Ding ◽  
Xiaodong Wu ◽  
Xiaodong Shen ◽  
Sheng Cui ◽  
Xiangbao Chen
Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7761
Author(s):  
Xiaohui Lu ◽  
Xiaoxue Luo ◽  
Shibo Cao ◽  
Changzhen Zou

Benefitting from the characteristics of a high latent heat capacity and stable phase change behavior, phase change materials have widely received concerns in the field of thermodynamic management. Ba(OH)2·8H2O is an ideal phase change material (PCM) in the mid-to-low temperature range, but its large-scale application is still limited by severe supercooling during the nucleation process. In this paper, the experimental analysis and comparison are performed via an Edisonian approach, where Ba(OH)2·8H2O is adopted as an original substrate; BaCO3, CaCl2, NaCl, KH2PO4, and NaOH are selected as nucleating agents; and graphite is used as a heat-conducting agent. The results show that Ba(OH)2·8H2O containing 1.2% BaCO3 and 0.2% graphite powder has the best performance. Compared with pure Ba(OH)2·8H2O, the supercooling degree is reduced to less than 1 °C, the phase change latent heat duration is extended, and the thermal conductivity is significantly improved. Therefore, this study not only provides a reference for the application of Ba(OH)2·8H2O, but can also be used as a guidance for other material modifications.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1395
Author(s):  
Angel Serrano ◽  
Ana M. Borreguero ◽  
Isabel Iglesias ◽  
Anselmo Acosta ◽  
Juan F. Rodríguez ◽  
...  

A novel form-stable phase-change material (PCM) based on facing bricks was developed by incorporating thermoregulating PEG-SiO2, synthetized by sol-gel method and based on polyethylene glycol as phase-change material and silica as stabilizer compound. The PEG-SiO2 in its liquid form (sol) is firstly adsorbed inside the porous brick and lastly stabilized (gel) by controlling its gelation time, obtaining form-stable PCMs with PEG-SiO2 contents within 15–110 wt.%. Kinetic adsorption curves of the sol into bricks having different porosities as well as maximum adsorption capacities were obtained. The effective diffusion coefficients (Deff) were estimated by means of Fick’s second law, it being possible to predict the adsorption of sol PEG-SiO2 by the brick as function of its porosity and the free diffusion coefficient. Finally, form-stable PCMs demonstrated an improvement in their thermal energy storage capacity (up to 338%), these materials being capable of buffering the indoor temperature during an entire operational day


Sign in / Sign up

Export Citation Format

Share Document