Effects of pilot fuel injection timing on the performance and emission characteristics of a diesel engine fuelled with biogas

2016 ◽  
Vol 13 (4) ◽  
pp. 407 ◽  
Author(s):  
Debabrata Barik ◽  
S. Murugan
Author(s):  
D.K. Dond ◽  
N.P. Gulhane

Limited fossil fuel reservoir capacity and pollution caused by them is the big problem in front of researchers. In the present paper, an attempt was made to find a solution to the same. The conventional fuel injection system was retrofitted with a simple version of the common rail direct injection system for the small diesel engine. Further, the effect of injection system parameters was observed on the performance and emission characteristics of the retrofitted common rail direct injection diesel engine. The parameters such as injection pressure, the start of pilot injection timing, the start of main injection timing and quantity of percentage fuel injection during the pilot and main injection period were considered for experimental investigation. It was observed that all the evaluated parameters were found vital for improving the engine’s performance and emission characteristics. The retrofitted common rail direct injection system shows an average 7% rise in brake thermal efficiency with economic, specific fuel consumption. At the same time, much more reduction in hydrocarbon, carbon monoxide and smoke opacity with a penalty of a slight increase in nitrogen oxides.


2014 ◽  
Vol 592-594 ◽  
pp. 1627-1631 ◽  
Author(s):  
Abhishek Sharma ◽  
S. Murugan

Early investigation on utilization of Jatropha methyl ester (JME) tyre pyrolysis oil (TPO) blends in a single cylinder, constant speed, direct injection diesel engine revealed that a blend of 80% JME and 20% TPO referred to as JMETPO20 blend give a better performance and lower emissions compared to other Jatropha methyl ester tyre pyrolysis oil (JMETPO) blends. In this study, for further improvement on performance and emission characteristics, and also to find optimum injection timing for blend, experiments have been carried out with varying the injection timing. Tests have been conducted under two advanced and two reratarded injection timings in addition to the original injection timing of 23 °CA bTDC. The experimental test results showed that for the JMETPO20 blend at advanced injection timing of 24.5 °CA the brake thermal efficiency increased by about 2.21%, compared to the result of original injection timing at full load. For the JMETPO20 blend at advanced injection timing of 24.5 °CA the nitric oxide and carbon dioxide emission increased by about 4.56% and 11.91% respectively at full load, and the carbon monoxide emission decreased by about 11.21%, compared to that of original injection timing.


Author(s):  
M. Nandeesh ◽  
R. Harishkumar ◽  
C.R. Rajashekar ◽  
N.R. Banapurmath ◽  
V.S. Yaliwal

The conventional diesel fuels are depleting at a faster pace. To reduce the burden on the economy, the reserves and sources for future has to be limited. The use of biodiesel derivatives from various sources and its blends in diesel engine has gained more importance in recent years. The present work investigates the feasibility of using dairy scum methyl esters (DSOME) of B20 blend in a modified single cylinder of common rail direct injection (CRDI) engine at a constant speed. Experiments were carried out at different injection timings from 25deg BTDC to 5deg ATDC with constant injection pressure as 600 bar. The fuel injection timing plays an important role in evaluating the performance, emission and combustion characteristics of the engine. The results show that the performance is improved with retarded injection timings compared to the operation of single cylinder DI engine fuelled with DSOME B20 biodiesel.


2007 ◽  
Vol 21 (3) ◽  
pp. 1504-1510 ◽  
Author(s):  
Zhihao Ma ◽  
Zuohua Huang ◽  
Chongxiao Li ◽  
Xinbin Wang ◽  
Haiyan Miao

Sign in / Sign up

Export Citation Format

Share Document