Effect of Injection Timing on Performance, Combustion and Emission Characteristics of Dairy Scum Methyl Esters in CRDI Engine

Author(s):  
M. Nandeesh ◽  
R. Harishkumar ◽  
C.R. Rajashekar ◽  
N.R. Banapurmath ◽  
V.S. Yaliwal

The conventional diesel fuels are depleting at a faster pace. To reduce the burden on the economy, the reserves and sources for future has to be limited. The use of biodiesel derivatives from various sources and its blends in diesel engine has gained more importance in recent years. The present work investigates the feasibility of using dairy scum methyl esters (DSOME) of B20 blend in a modified single cylinder of common rail direct injection (CRDI) engine at a constant speed. Experiments were carried out at different injection timings from 25deg BTDC to 5deg ATDC with constant injection pressure as 600 bar. The fuel injection timing plays an important role in evaluating the performance, emission and combustion characteristics of the engine. The results show that the performance is improved with retarded injection timings compared to the operation of single cylinder DI engine fuelled with DSOME B20 biodiesel.

This paper represents the relative performance of a small single-cylinder diesel engine having capacity 3.5 kW. This paper covers experimental investigations of most influencing combustion parameters such as compression ratio, injection pressure and start of injection timing and their values on performance, emission and combustion characteristic of the small single-cylinder CRDI diesel engine for which the mechanical fuel injection system retrofitted with a simple version of the CRDI system. CRDI has yielded good results for large diesel and petrol engines but still not incorporate for cheaper small single-cylinder engines, typically used in the agricultural sector and decentralized power sector for a country like India. It is observed that starts of injection timing and injection pressure are the key parameters for improving the combustion characteristics and therefore engine performance while compression ratio mainly affects the emission characteristics of the engine. Retrofitted CRDI system yielded improved exhaust emission and performance of the engine.


Author(s):  
Sukhbir Singh Khaira ◽  
Amandeep Singh ◽  
Marcis Jansons

Acoustic noise emitted by a diesel engine generally exceeds that produced by its spark-ignited equivalent and may hinder the acceptance of this more efficient engine type in the passenger car market (1). This work characterizes the combustion noise from a single-cylinder direct-injection diesel engine and examines the degree to which it may be minimized by optimal choice of injection parameters. The relative contribution of motoring, combustion and resonance components to overall engine noise are determined by decomposition of in-cylinder pressure traces over a range of load, injection pressure and start of injection. The frequency spectra of microphone signals recorded external to the engine are correlated with those of in-cylinder pressure traces. Short Time Fourier Transformation (STFT) is applied to cylinder pressure traces to reveal the occurrence of motoring, combustion noise and resonance in the frequency domain over the course of the engine cycle. Loudness is found to increase with enhanced resonance, in proportion to the rate of cylinder pressure rise and under conditions of high injection pressure, load and advanced injection timing.


Author(s):  
D.K. Dond ◽  
N.P. Gulhane

Limited fossil fuel reservoir capacity and pollution caused by them is the big problem in front of researchers. In the present paper, an attempt was made to find a solution to the same. The conventional fuel injection system was retrofitted with a simple version of the common rail direct injection system for the small diesel engine. Further, the effect of injection system parameters was observed on the performance and emission characteristics of the retrofitted common rail direct injection diesel engine. The parameters such as injection pressure, the start of pilot injection timing, the start of main injection timing and quantity of percentage fuel injection during the pilot and main injection period were considered for experimental investigation. It was observed that all the evaluated parameters were found vital for improving the engine’s performance and emission characteristics. The retrofitted common rail direct injection system shows an average 7% rise in brake thermal efficiency with economic, specific fuel consumption. At the same time, much more reduction in hydrocarbon, carbon monoxide and smoke opacity with a penalty of a slight increase in nitrogen oxides.


Sign in / Sign up

Export Citation Format

Share Document