Numerical study of flow over blunt bodies moving at supersonic speed

Author(s):  
Devabrata Sahoo ◽  
Mohini U. Kamble ◽  
Kiran A. Dadhale
Author(s):  
Marcin Figat ◽  
Agnieszka Kwiek

This paper presents the results of a numerical study of the aerodynamic shape of the Rocket Plane LEX. The Rocket Plane is a main part of the Modular Airplane System – MAS; a special vehicle devoted to suborbital tourist flights. The Rocket Plane was designed for subsonic and supersonic flight conditions. Therefore, the impact of the Mach number should be considered during the aerodynamic design of the Rocket Plane. The main goal of the investigation was to determine the sensitivity of the Rocket Plane aerodynamic characteristics to the Mach number during the optimisation of the LEX geometry. The paper includes results of the optimisation process for Mach number from the range Ma = 0.5 to Ma = 2.5. These results reveal that the aerodynamic characteristics of models optimised for the subsonic and transonic regime of Mach numbers (up to Ma = 1) were also improved for the supersonic speed regime. However, in the case of models optimised for the supersonic flight regime the aerodynamic characteristics in subsonic flight regime, are inferior compared to the model before the optimisation process.


2019 ◽  
Vol 142 (1) ◽  
Author(s):  
Ashwani Assam ◽  
M. R. Nived ◽  
Nikhil Narayan Kalkote ◽  
Vinayak Eswaran

Abstract The numerical computation of hypersonic flows over blunt bodies is challenging due to the difficulty in robust and accurate wall heat flux prediction and proper capturing of shock waves free from the “carbuncle” phenomenon and other shock anomalies. It is important to understand how this behavior is affected due to rarefaction, which in turn will help to improve the study of aerospace vehicles flowing in rarefied and hypersonic regime. Recently, the SLAU2 convective scheme was shown to suppress the shock anomalies found in capturing strong shocks, however, it still showed a wavy pattern of heating. We have proposed a modification to the SLAU2 convective scheme to improve the accuracy of flow predictions in the presence of strong shocks. We then perform the numerical simulation of hypersonic viscous flow over a cylinder at Mach 8 and 16.34 at different Knudsen numbers. We carry out the study using the modified SLAU2 and the classical Roe schemes. We study how the shock anomalies found in the continuum hypersonic flows behave with the degree of rarefaction. It is found that the modified SLAU2 captures the shock free from the shock anomalies at all Kn, while the Roe scheme lacks robustness for Kn≲10−3. The variation of different flow properties such as heat flux, wall shear stress, and the Mach number is investigated. The peak heating value was observed to decrease with the degree of rarefaction.


AIAA Journal ◽  
1991 ◽  
Vol 29 (5) ◽  
pp. 704-711 ◽  
Author(s):  
Eswar Josyula ◽  
Joseph S. Shange

Sign in / Sign up

Export Citation Format

Share Document