convective scheme
Recently Published Documents


TOTAL DOCUMENTS

27
(FIVE YEARS 4)

H-INDEX

13
(FIVE YEARS 1)

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Nikhil Kalkote ◽  
Ashwani Assam ◽  
Vinayak Eswaran

Purpose The purpose of this study is to present and demonstrate a numerical method for solving chemically reacting flows. These are important for energy conversion devices, which rely on chemical reactions as their operational mechanism, with heat generated from the combustion of the fuel, often gases, being converted to work. Design/methodology/approach The numerical study of such flows requires the set of Navier-Stokes equations to be extended to include multiple species and the chemical reactions between them. The numerical method implemented in this study also accounts for changes in the material properties because of temperature variations and the process to handle steep spatial fronts and stiff source terms without incurring any numerical instabilities. An all-speed numerical framework is used through simple low-dissipation advection upwind splitting (SLAU) convective scheme, and it has been extended in a multi-component species framework on the in-house density-based flow solver. The capability of solving turbulent combustion is also implemented using the Eddy Dissipation Concept (EDC) framework and the recent k-kl turbulence model. Findings The numerical implementation has been demonstrated for several stiff problems in laminar and turbulent combustion. The laminar combustion results are compared from the corresponding results from the Cantera library, and the turbulent combustion computations are found to be consistent with the experimental results. Originality/value This paper has extended the single gas density-based framework to handle multi-component gaseous mixtures. This paper has demonstrated the capability of the numerical framework for solving non-reacting/reacting laminar and turbulent flow problems. The all-speed SLAU convective scheme has been extended in the multi-component species framework, and the turbulent model k-kl is used for turbulent combustion, which has not been done previously. While the former method provides the capability of solving for low-speed flows using the density-based method, the later is a length-scale-based method that includes scale-adaptive simulation characteristics in the turbulence modeling. The SLAU scheme has proven to work well for unsteady flows while the k-kL model works well in non-stationary turbulent flows. As both these flow features are commonly found in industrially important reacting flows, the convection scheme and the turbulence model together will enhance the numerical predictions of such flows.


2019 ◽  
Vol 142 (1) ◽  
Author(s):  
Ashwani Assam ◽  
M. R. Nived ◽  
Nikhil Narayan Kalkote ◽  
Vinayak Eswaran

Abstract The numerical computation of hypersonic flows over blunt bodies is challenging due to the difficulty in robust and accurate wall heat flux prediction and proper capturing of shock waves free from the “carbuncle” phenomenon and other shock anomalies. It is important to understand how this behavior is affected due to rarefaction, which in turn will help to improve the study of aerospace vehicles flowing in rarefied and hypersonic regime. Recently, the SLAU2 convective scheme was shown to suppress the shock anomalies found in capturing strong shocks, however, it still showed a wavy pattern of heating. We have proposed a modification to the SLAU2 convective scheme to improve the accuracy of flow predictions in the presence of strong shocks. We then perform the numerical simulation of hypersonic viscous flow over a cylinder at Mach 8 and 16.34 at different Knudsen numbers. We carry out the study using the modified SLAU2 and the classical Roe schemes. We study how the shock anomalies found in the continuum hypersonic flows behave with the degree of rarefaction. It is found that the modified SLAU2 captures the shock free from the shock anomalies at all Kn, while the Roe scheme lacks robustness for Kn≲10−3. The variation of different flow properties such as heat flux, wall shear stress, and the Mach number is investigated. The peak heating value was observed to decrease with the degree of rarefaction.


2019 ◽  
Vol 19 (20) ◽  
pp. 13067-13078 ◽  
Author(s):  
Qindan Zhu ◽  
Joshua L. Laughner ◽  
Ronald C. Cohen

Abstract. Lightning is an important NOx source representing ∼10 % of the global source of odd N and a much larger percentage in the upper troposphere. The poor understanding of spatial and temporal patterns of lightning contributes to a large uncertainty in understanding upper tropospheric chemistry. We implement a lightning parameterization using the product of convective available potential energy (CAPE) and convective precipitation rate (PR) coupled with the Kain–Fritsch convective scheme (KF/CAPE-PR) into the Weather Research and Forecasting-Chemistry (WRF-Chem) model. Compared to the cloud-top height (CTH) lightning parameterization combined with the Grell 3-D convective scheme (G3/CTH), we show that the switch of convective scheme improves the correlation of lightning flash density in the southeastern US from 0.30 to 0.67 when comparing against the Earth Networks Total Lightning Network; the switch of lightning parameterization contributes to the improvement of the correlation from 0.48 to 0.62 elsewhere in the US. The simulated NO2 profiles using the KF/CAPE-PR parameterization exhibit better agreement with aircraft observations in the middle and upper troposphere. Using a lightning NOx production rate of 500 mol NO flash−1, the a priori NO2 profile generated by the simulation with the KF/CAPE-PR parameterization reduces the air mass factor for NO2 retrievals by 16 % on average in the southeastern US in the late spring and early summer compared to simulations using the G3/CTH parameterization. This causes an average change in NO2 vertical column density 4 times higher than the average uncertainty.


Atmosphere ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 321 ◽  
Author(s):  
Sébastien Doutreloup ◽  
Christoph Kittel ◽  
Coraline Wyard ◽  
Alexandre Belleflamme ◽  
Charles Amory ◽  
...  

The first aim of this study is to determine if changes in precipitation and more specifically in convective precipitation are projected in a warmer climate over Belgium. The second aim is to evaluate if these changes are dependent on the convective scheme used. For this purpose, the regional climate model Modèle Atmosphérique Régional (MAR) was forced by two general circulation models (NorESM1-M and MIROC5) with five convective schemes (namely: two versions of the Bechtold schemes, the Betts–Miller–Janjić scheme, the Kain–Fritsch scheme, and the modified Tiedtke scheme) in order to assess changes in future precipitation quantities/distributions and associated uncertainties. In a warmer climate (using RCP8.5), our model simulates a small increase of convective precipitation, but lower than the anomalies and the interannual variability over the current climate, since all MAR experiments simulate a stronger warming in the upper troposphere than in the lower atmospheric layers, favoring more stable conditions. No change is also projected in extreme precipitation nor in the ratio of convective precipitation. While MAR is more sensitive to the convective scheme when forced by GCMs than when forced by ERA-Interim over the current climate, projected changes from all MAR experiments compare well.


2018 ◽  
Vol 9 (4) ◽  
pp. 1261-1278 ◽  
Author(s):  
Brahima Koné ◽  
Arona Diedhiou ◽  
N'datchoh Evelyne Touré ◽  
Mouhamadou Bamba Sylla ◽  
Filippo Giorgi ◽  
...  

Abstract. The latest version of RegCM4 with CLM4.5 as a land surface scheme was used to assess the performance and sensitivity of the simulated West African climate system to different convection schemes. The sensitivity studies were performed over the West African domain from November 2002 to December 2004 at a spatial resolution of 50 km × 50 km and involved five convective schemes: (i) Emanuel; (ii) Grell; (iii) Emanuel over land and Grell over ocean (Mix1); (iv) Grell over land and Emanuel over ocean (Mix2); and (v) Tiedtke. All simulations were forced with ERA-Interim data. Validation of surface temperature at 2 m and precipitation were conducted using data from the Climate Research Unit (CRU), Global Precipitation Climatology Project (GPCP) and the Tropical Rainfall Measurement Mission (TRMM) during June to September (rainy season), while the simulated atmospheric dynamic was compared to ERA-Interim data. It is worth noting that the few previous similar sensitivity studies conducted in the region were performed using BATS as a land surface scheme and involved less convective schemes. Compared with the previous version of RegCM, RegCM4-CLM also shows a general cold bias over West Africa whatever the convective scheme used. This cold bias is more reduced when using the Emanuel convective scheme. In terms of precipitation, the dominant feature in model simulations is a dry bias that is better reduced when using the Emanuel convective scheme. Considering the good performance with respect to a quantitative evaluation of the temperature and precipitation simulations over the entire West African domain and its subregions, the Emanuel convective scheme is recommended for the study of the West African climate system.


2018 ◽  
Vol 8 (1) ◽  
pp. 40-43 ◽  
Author(s):  
Valery V. PANCHENKO

A scheme of a radiant heating regenerative system on the basis of a two-fl ow heat generator, and system and form of heat-radiating air ducts is proposed. It is shown that the system of radiant heating is more effi cient as compared to the conventional convection system. Traditionally, the convective scheme of heating is used wherein radiators installed near the fl oor are used. Water serves as the working fl uid in the radiators. The proposed radiant heating regenerative system is based on the transfer of heat in the form of infrared electromagnetic radiation. An effi cient two-fl ow heat generator with infrared emitt ers has been developed, which gives off heat only from the radiating surface of heat exchangers. This system allows you to reduce investment, operating costs and improve the effi ciency of the heating system.


2016 ◽  
Vol 31 (5) ◽  
pp. 1547-1572 ◽  
Author(s):  
Silvio N. Figueroa ◽  
José P. Bonatti ◽  
Paulo Y. Kubota ◽  
Georg A. Grell ◽  
Hugh Morrison ◽  
...  

Abstract This article describes the main features of the Brazilian Global Atmospheric Model (BAM), analyses of its performance for tropical rainfall forecasting, and its sensitivity to convective scheme and horizontal resolution. BAM is the new global atmospheric model of the Center for Weather Forecasting and Climate Research [Centro de Previsão de Tempo e Estudos Climáticos (CPTEC)], which includes a new dynamical core and state-of-the-art parameterization schemes. BAM’s dynamical core incorporates a monotonic two-time-level semi-Lagrangian scheme, which is carried out completely on the model grid for the tridimensional transport of moisture, microphysical prognostic variables, and tracers. The performance of the quantitative precipitation forecasts (QPFs) from two convective schemes, the Grell–Dévényi (GD) scheme and its modified version (GDM), and two different horizontal resolutions are evaluated against the daily TRMM Multisatellite Precipitation Analysis over different tropical regions. Three main results are 1) the QPF skill was improved substantially with GDM in comparison to GD; 2) the increase in the horizontal resolution without any ad hoc tuning improves the variance of precipitation over continents with complex orography, such as Africa and South America, whereas over oceans there are no significant differences; and 3) the systematic errors (dry or wet biases) remain virtually unchanged for 5-day forecasts. Despite improvements in the tropical precipitation forecasts, especially over southeastern Brazil, dry biases over the Amazon and La Plata remain in BAM. Improving the precipitation forecasts over these regions remains a challenge for the future development of the model to be used not only for numerical weather prediction over South America but also for global climate simulations.


2016 ◽  
Vol 144 (6) ◽  
pp. 2285-2306 ◽  
Author(s):  
Laura D. Fowler ◽  
William C. Skamarock ◽  
Georg A. Grell ◽  
Saulo R. Freitas ◽  
Michael G. Duda

Abstract The authors implemented the Grell–Freitas (GF) parameterization of convection in which the cloud-base mass flux varies quadratically as a function of the convective updraft fraction in the global nonhydrostatic Model for Prediction Across Scales (MPAS). They evaluated the performance of GF using quasi-uniform meshes and a variable-resolution mesh centered over South America, the resolution of which varied between hydrostatic (50 km) and nonhydrostatic (3 km) scales. Four-day forecasts using a 50-km and a 15-km quasi-uniform mesh, initialized with GFS data for 0000 UTC 10 January 2014, reveal that MPAS overestimates precipitation in the tropics relative to the Tropical Rainfall Measuring Mission Multisatellite Precipitation Analysis data. Results of 4-day forecasts using the variable-resolution mesh reveal that over the refined region of the mesh, GF performs as a precipitating shallow convective scheme, whereas over the coarse region of the mesh, GF acts as a conventional deep convective scheme. As horizontal resolution increases and subgrid-scale motions become increasingly resolved, the contribution of convective and grid-scale precipitation to the total precipitation decreases and increases, respectively. Probability density distributions of precipitation highlight a smooth transition in the partitioning between convective and grid-scale precipitation, including at gray-zone scales across the transition region between the coarsest and finest regions of the global mesh. Variable-resolution meshes spanning between hydrostatic and nonhydrostatic scales are shown to be ideal tools to evaluate the horizontal scale dependence of parameterized convective and grid-scale moist processes.


2011 ◽  
Vol 11 (5) ◽  
pp. 1327-1339 ◽  
Author(s):  
N. Mazarakis ◽  
V. Kotroni ◽  
K. Lagouvardos ◽  
A. A. Argiriou ◽  
C. J. Anderson

Abstract. The sensitivity of quantitative precipitation forecasts to various modifications of the Kain-Fritsch (KF) convective parameterization scheme (CPS) is examined for twenty selected cases characterized by intense convective activity and widespread precipitation over Greece, during the warm period of 2005–2007. The study is conducted using the MM5 model with a two nested domains strategy, with horizontal grid increments of 24 and 8 km, respectively. Five modifications to the KF CPS, each designed to test the sensitivity of the model to the convective scheme formulation, are discussed. The modifications include: (i) the maximization of the convective scheme precipitation efficiency, (ii) the change of the convective time step, (iii) the forcing of the convective scheme to produce more/less cloud material, (iv) changes to the trigger function and (v) the alteration of the vertical profile of updraft mass flux detrainment. The simulated precipitation from the 8-km grid is verified against raingauge measurements. Although skill scores vary widely among the cases and the precipitation thresholds, model results using the modifications of the convective scheme show improvements in 6-h precipitation totals compared to simulations generated using the unmodified convective scheme. In general, forcing the model to produce less cloud material improves the precipitation forecast for the moderate and high precipitation amounts, while the same modification and the change of the convective time step to 1 min has the same result for the high precipitation thresholds. The increase of convective time step to 15 min, the maximization of precipitation efficiency and the changes to the trigger function give similar results for medium and high precipitation. On the other hand, the forecast for the light precipitation is improved by forcing the model to produce more cloud material as well as by the alteration of the vertical profile of updraft mass flux detrainment.


2010 ◽  
Author(s):  
Wu Jian ◽  
Philippe Traoré ◽  
Romat Hubert ◽  
Theodore E. Simos ◽  
George Psihoyios ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document