scholarly journals Performance and emission characteristics of a single cylinder spark ignition engine fuelled by ethanol-H2O based micro-emulsion, blended ethanol, and CNG as an alternative fuel

Author(s):  
Ufaith Qadiri
2021 ◽  
Vol 39 (3) ◽  
pp. 919-924
Author(s):  
Ufaith Qadiri ◽  
Amjad Ali Pasha ◽  
Mustafa Mutiur Rahman ◽  
Mohammed Abdul Raheem ◽  
Abdul Gani Abdul Jameel ◽  
...  

In this contribution, the investigation conducted on alternative fuels includes methanol 20% blended with gasoline 80% and emulsion-based fuel with the composition of gasoline 80%, ethanol 15%, and H2O 5% are compared with 100% conventional gasoline fuel. These fueled single-cylinders spark ignition engine is studied for checking their performance and emission characteristics as per future emission norms. This work is performed on One-dimensional AVL Boost Simulation Software. The simulations predicted the performance and emission characteristics were far lesser than conventional 100% gasoline. These fuels meet the strict emission regulations of Euro VII. The main purpose of this investigation is to use alternative fuels to improve the performance and emission characteristics of the single- cylinder spark ignition engine and reduce the consumption of fossil fuel reserves. This investigation led to the conclusion that by using methanol 20% in 80% gasoline and micro-emulsion, fuel improves the power, BSFC (brake specific fuel consumption), thermal efficiency and combustion properties of the single-cylinder spark-ignition engine. The CO, HC and NOx emissions were also reduced for alternative fuel than 100% gasoline fuel. The novel water-based emulsion fuel showed the lowest value of NOx emissions as compared to blended 20% methanol with 80% gasoline and 100% gasoline fuel.


2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Gang Wu ◽  
Deng Wu ◽  
Yuelin Li ◽  
Lei Meng

Ethanol is the most extensively used oxygenate for spark ignition (SI) engines. In comparison with ethanol, n-butanol exhibits a number of desirable properties for use in SI engines, which has proved to be a very promising oxygenated alternative fuel in recent years. However, the dehydration and recovery of bio-n-butanol consume extra money and energy in the acetone-n-butanol-ethanol (ABE) fermentation process. Hence, we focus on the research of ABE as a potential oxygenated alternative fuel in SI engines. The combustion, performance, and emission characteristics of B30, E30, ABE30 (i.e., 30 vol.% n-butanol, ethanol, and ABE blended with 70 vol.% gasoline), and G100 (pure gasoline) were compared in this study. The comparison results between B30, E30, and ABE30 at stoichiometric conditions show that ABE30 presents retarded combustion phasing, higher brake thermal efficiency, lower CO emissions, higher UHC emissions, and similar NOx emissions. In comparison with G100 under various engine loads and equivalence ratios, for the most part, ABE30 exhibits 1.4% higher brake thermal efficiency, 14% lower carbon monoxide, 9.7% lower unburned hydrocarbons, and 23.4% lower nitrogen oxides. It is indicated that ABE could be served as the oxygenate in spark ignition engine due to its capability to improve energy efficiency and reduce pollutant emissions.


Sign in / Sign up

Export Citation Format

Share Document