scholarly journals Effect of Acetone-n-Butanol-Ethanol (ABE) as an Oxygenate on Combustion, Performance, and Emission Characteristics of a Spark Ignition Engine

2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Gang Wu ◽  
Deng Wu ◽  
Yuelin Li ◽  
Lei Meng

Ethanol is the most extensively used oxygenate for spark ignition (SI) engines. In comparison with ethanol, n-butanol exhibits a number of desirable properties for use in SI engines, which has proved to be a very promising oxygenated alternative fuel in recent years. However, the dehydration and recovery of bio-n-butanol consume extra money and energy in the acetone-n-butanol-ethanol (ABE) fermentation process. Hence, we focus on the research of ABE as a potential oxygenated alternative fuel in SI engines. The combustion, performance, and emission characteristics of B30, E30, ABE30 (i.e., 30 vol.% n-butanol, ethanol, and ABE blended with 70 vol.% gasoline), and G100 (pure gasoline) were compared in this study. The comparison results between B30, E30, and ABE30 at stoichiometric conditions show that ABE30 presents retarded combustion phasing, higher brake thermal efficiency, lower CO emissions, higher UHC emissions, and similar NOx emissions. In comparison with G100 under various engine loads and equivalence ratios, for the most part, ABE30 exhibits 1.4% higher brake thermal efficiency, 14% lower carbon monoxide, 9.7% lower unburned hydrocarbons, and 23.4% lower nitrogen oxides. It is indicated that ABE could be served as the oxygenate in spark ignition engine due to its capability to improve energy efficiency and reduce pollutant emissions.

2017 ◽  
Vol 9 (2) ◽  
pp. 168781401668884 ◽  
Author(s):  
Yu Li ◽  
Jinke Gong ◽  
Wenhua Yuan ◽  
Jun Fu ◽  
Bin Zhang ◽  
...  

Ethanol is known as the most widely used alternative fuel for spark-ignition engines. Compared to it, butanol has proved to be a very promising renewable fuel in recent years for desirable properties. The conjoint analysis on combustion, performance, and emissions characteristics of a port fuel injection spark-ignition engine fueled with butanol–gasoline blends was carried out. In comparison with butanol–gasoline blends with various butanol ratio (0–60 vol% referred as G100~B60) and conventional alcohol alternative fuels (methanol, ethanol, and butanol)–gasoline blends, it shows that B30 performs well in engine performance and emissions, including brake thermal efficiency, brake-specific fuel consumption, carbon monoxide, unburned hydrocarbons, and nitrogen oxides. Then, B30 was compared with G100 under various equivalence ratios ( Φ = 0.83–1.25) and engine loads (3 and 5-bar brake mean effective pressure). In summary, B30 presents an advanced combustion phasing, which leads to a 0.3%–2.8% lower brake thermal efficiency than G100 as the engine was running at the spark timing of gasoline’s maximum brake torque (MBT). Therefore, the sparking timing should be postponed when fueled with butanol–gasoline blends. For emissions, the lower carbon monoxide (2.3%–8.7%), unburned hydrocarbons (12.4%–27.5%), and nitrogen oxides (2.8%–19.6%) were shown for B30 compared with G100. Therefore, butanol could be a good alternative fuel to gasoline for its potential to improve combustion efficiency and reduce pollutant emissions.


2020 ◽  
Vol 143 (4) ◽  
Author(s):  
Danh Chan Nguyen ◽  
Anh Tuan Hoang ◽  
Quang Vinh Tran ◽  
Hadiyanto Hadiyanto ◽  
Kanit Wattanavichien ◽  
...  

Abstract Currently, the supply of diminishing fossil fuel reserves, and the rise in challenges in environmental, political and economic consequences have caused the great concerns in the development of modern society; these have forced the policy-makers and researchers to look for the renewable and green energy sources. Deemed as a promising renewable alternative to traditional fossil fuels, 2,5-dimethylfuran (DMF, chemical formula C6H8O)—a derivative of furan—has the potential to relieve the growing shortage of fossil fuels while satisfying the increase in global energy demand and minimizing the adverse effects of climate change. DMF can be used as a clean source of liquid transportation biofuel given the fact that it is directly obtained from biomass-derived carbohydrates. In reviewing current DMF production methods, this review paper analyzes and presents the comparison of catalytic performance in the conversion of biomass into DMF. In addition, the applicability of DMF in spark-ignition (SI) engines is thoroughly analyzed based on the spray and flame, combustion, performance, and emission characteristics of SI engines running on DMF compared with ethanol and gasoline. More interestingly, the knocking, lubrication, and wear characteristics in SI engines fueled with DMF are also evaluated and discussed. Nonetheless, further investigation on optimization strategies on DMF production process should be conducted prior to the initiation of large-scale commercialization as well as the application of DMF to real-world SI engines.


2018 ◽  
Vol 7 (4.5) ◽  
pp. 405
Author(s):  
Aritra Ganguly ◽  
Baidya Nath Murmu ◽  
Somnath Chakrabarti

An experiment has been conducted on a four-stroke, four-cylinder spark ignition engine with and without recirculation of exhaust gas for different loads at a constant speed. Two cases were considered, the first in which 10% and later 20% of the exhaust gas was directly supplied to the intake manifold at a temperature of 820°C, while in the second case the same proportions of exhaust gas were cooled in a heat-exchanger to a temperature of 210°C before supply. Engine performance parameters like brake specific fuel consumption, brake thermal efficiency were evaluated under those conditions and compared with the same engine operating without recirculation. The corresponding emission characteristics of the engine were also measured using an exhaust gas analyzer which measured the amount of NOx, CO, CO2 and un-burnt HC. The performance and emissions characteristics of the engine obtained with hot and cold EGR were compared with reference to the same engine operating without EGR. The study revealed that the performance of the engine was better in terms of brake thermal efficiency and brake specific fuel consumption with cold EGR compared to hot EGR. However, the emissions of CO and HC were higher with cold EGR compared to that of hot EGR.   


Sign in / Sign up

Export Citation Format

Share Document