scholarly journals Biomechanical performance of a bicycle helmet design on a six-year-old head impact protection

2020 ◽  
Vol 11 (3) ◽  
pp. 197
Author(s):  
Bei Li ◽  
Haiyan Li ◽  
Shihai Cui ◽  
Lijuan He ◽  
Shijie Ruan
2020 ◽  
Vol 11 (3) ◽  
pp. 197
Author(s):  
Lijuan He ◽  
Shijie Ruan ◽  
Haiyan Li ◽  
Shihai Cui ◽  
Bei Li

2007 ◽  
Author(s):  
Mukesh Sharma ◽  
Rachit Pandey ◽  
Ashok Gupta ◽  
S. G. Saraf

2014 ◽  
Vol 120 (4) ◽  
pp. 919-922 ◽  
Author(s):  
Steven Rowson ◽  
Stefan M. Duma ◽  
Richard M. Greenwald ◽  
Jonathan G. Beckwith ◽  
Jeffrey J. Chu ◽  
...  

Of all sports, football accounts for the highest incidence of concussion in the US due to the large number of athletes participating and the nature of the sport. While there is general agreement that concussion incidence can be reduced through rule changes and teaching proper tackling technique, there remains debate as to whether helmet design may also reduce the incidence of concussion. A retrospective analysis was performed of head impact data collected from 1833 collegiate football players who were instrumented with helmet-mounted accelerometer arrays for games and practices. Data were collected between 2005 and 2010 from 8 collegiate football teams: Virginia Tech, University of North Carolina, University of Oklahoma, Dartmouth College, Brown University, University of Minnesota, Indiana University, and University of Illinois. Concussion rates were compared between players wearing Riddell VSR4 and Riddell Revolution helmets while controlling for the head impact exposure of each player. A total of 1,281,444 head impacts were recorded, from which 64 concussions were diagnosed. The relative risk of sustaining a concussion in a Revolution helmet compared with a VSR4 helmet was 46.1% (95% CI 28.1%–75.8%). When controlling for each player's exposure to head impact, a significant difference was found between concussion rates for players in VSR4 and Revolution helmets (χ2 = 4.68, p = 0.0305). This study illustrates that differences in the ability to reduce concussion risk exist between helmet models in football. Although helmet design may never prevent all concussions from occurring in football, evidence illustrates that it can reduce the incidence of this injury.


2020 ◽  
Vol 10 (7) ◽  
pp. 2492
Author(s):  
Miguel M. Varela ◽  
Fábio A.O. Fernandes ◽  
Ricardo J. Alves de Sousa

Nowadays, the number of people practising contact sports has increased. In many of them, using head protective equipment is not mandatory, even if the use of headbands could increase the level of safety regarding several types of traumatic brain injuries. Many commercial solutions are currently available, based on plastic-based foams providing a decent level of protection and comfort to the user. This work introduces the use of agglomerated cork as an eco-friendly alternative to synthetic foams but at least keeping safety levels. Cork is a natural cellular material that has been showing excellent crashworthiness properties. In this study, cork agglomerate density is carefully chosen to be incorporated into a protective headband. Results are compared against three other commercial headbands. For each one, the risk of brain injury was analysed for different injury thresholds and impact energies. The results clearly demonstrate that the cork-based apparel may provide comparable, and in some cases, better performances, outlasting the commercial ones.


2018 ◽  
Vol 154 ◽  
pp. 153-169
Author(s):  
Devon J. Spinelli ◽  
Thomas A. Plaisted ◽  
Eric D. Wetzel

2021 ◽  
Vol 8 (11) ◽  
pp. 173
Author(s):  
Kwong Ming Tse ◽  
Daniel Holder

In this study, a novel expandable bicycle helmet, which integrates an airbag system into the conventional helmet design, was proposed to explore the potential synergetic effect of an expandable airbag and a standard commuter-type EPS helmet. The traumatic brain injury mitigation performance of the proposed expandable helmet was evaluated against that of a typical traditional bicycle helmet. A series of dynamic impact simulations on both a helmeted headform and a representative human head with different configurations were carried out in accordance with the widely recognised international bicycle helmet test standards. The impact simulations were initially performed on a ballast headform for validation and benchmarking purposes, while the subsequent ones on a biofidelic human head model were used for assessing any potential intracranial injury. It was found that the proposed expandable helmet performed admirably better when compared to a conventional helmet design—showing improvements in impact energy attenuation, as well as kinematic and biometric injury risk reduction. More importantly, this expandable helmet concept, integrating the airbag system in the conventional design, offers adequate protection to the cyclist in the unlikely case of airbag deployment failure.


Sign in / Sign up

Export Citation Format

Share Document