scholarly journals The Effect of Trilostane, A New Inhibitor of Adrenal Steroid Biosynthesis, on Blood Pressure, Plasma Aldosterone and Other Steroid Hormones, Serum Potassium and Plasma Renin Activity in Primary Aldosteronism

1982 ◽  
Vol 58 (3) ◽  
pp. 184-198 ◽  
Author(s):  
Shuichi SHIGETOMI ◽  
Soitsu FUKUCHI ◽  
Kazumi HARUYAMA ◽  
Masaaki YAMAZAKI
2019 ◽  
Vol 104 (10) ◽  
pp. 4703-4714 ◽  
Author(s):  
Beckey Trinh ◽  
Matthias Hepprich ◽  
Matthias J Betz ◽  
Thilo Burkard ◽  
Claudia Cavelti-Weder ◽  
...  

Abstract Context Mammalian target of rapamycin complex 1 (mTORC1) activity is often increased in the adrenal cortex of patients with primary aldosteronism (PA), and mTORC1 inhibition decreases aldosterone production in adrenocortical cells, suggesting the mTORC1 pathway as a target for treatment of PA. Objective To investigate the effect of mTORC1 inhibition on adrenal steroid hormones and hemodynamic parameters in mice and in patients with PA. Design (i) Plasma aldosterone, corticosterone, and angiotensin II (Ang II) were measured in mice treated for 24 hours with vehicle or rapamycin. (ii) Plasma aldosterone levels after a saline infusion test, plasma renin, and 24-hour urine steroid hormone metabolome and hemodynamic parameters were measured during an open-label study in 12 patients with PA, before and after 2 weeks of treatment with everolimus and after a 2-week washout. Main Outcome Measures (i) Change in plasma aldosterone levels. (ii) Change in other steroid hormones, renin, Ang II, and hemodynamic parameters. Results Treatment of mice with rapamycin significantly decreased plasma aldosterone levels (P = 0.007). Overall, treatment of PA patients with everolimus significantly decreased blood pressure (P < 0.05) and increased renin levels (P = 0.001) but did not decrease aldosterone levels significantly. However, prominent reduction of aldosterone levels upon everolimus treatment was observed in four patients. Conclusion In mice, mTORC1 inhibition was associated with reduced plasma aldosterone levels. In patients with PA, mTORC1 inhibition was associated with improved blood pressure and renin suppression. In addition, mTORC1 inhibition appeared to reduce plasma aldosterone in a subset of patients.


Hypertension ◽  
2020 ◽  
Vol 76 (2) ◽  
pp. 488-496 ◽  
Author(s):  
Zeng Guo ◽  
Marko Poglitsch ◽  
Diane Cowley ◽  
Oliver Domenig ◽  
Brett C. McWhinney ◽  
...  

The aldosterone/renin ratio (ARR) is currently considered the most reliable approach for case detection of primary aldosteronism (PA). ACE (Angiotensin-converting enzyme) inhibitors are known to raise renin and lower aldosterone levels, thereby causing false-negative ARR results. Because ACE inhibitors lower angiotensin II levels, we hypothesized that the aldosterone/equilibrium angiotensin II (eqAngII) ratio (AA2R) would remain elevated in PA. Receiver operating characteristic curve analysis involving 60 patients with PA and 40 patients without PA revealed that the AA2R was not inferior to the ARR in screening for PA. When using liquid chromatography-tandem mass spectrometry to measure plasma aldosterone concentration, the predicted optimal AA2R cutoff for PA screening was 8.3 (pmol/L)/(pmol/L). We then compared the diagnostic performance of the AA2R with the ARR among 25 patients with PA administered ramipril (5 mg/day) for 2 weeks. Compared with basally, plasma levels of equilibrium angiotensin I (eqAngI) and direct renin concentration increased significantly ( P <0.01 or P <0.05) after ramipril treatment, whereas eqAngII and ACE activity (eqAngII/eqAngI) decreased significantly ( P <0.01). The changes of plasma renin activity and plasma aldosterone concentration in the current study were not significant. On day 14, 4 patients displayed false-negative results using ARR_direct renin concentration (plasma aldosterone concentration/direct renin concentration), 3 of whom also showed false-negative ARR_plasma renin activity (plasma aldosterone concentration/plasma renin activity). On day 15, 2 patients still demonstrated false-negative ARR_plasma renin activity, one of whom also showed a false-negative ARR_direct renin concentration. No false-negative AA2R results were observed on either day 14 or 15. In conclusion, compared with ARR which can be affected by ACE inhibitors causing false-negative screening results, the AA2R seems to be superior in detecting PA among subjects receiving ACE inhibitors.


1988 ◽  
Vol 119 (2) ◽  
pp. 257-262 ◽  
Author(s):  
Sadao Nakajima ◽  
Hiromichi Suzuki ◽  
Yo Kageyama ◽  
Takashi Takita ◽  
Takao Saruta

Abstract. The effects of atrial natriuretic peptide (ANP) on mean arterial blood pressure, heart rate, plasma renin activity, aldosterone, cortisol, norepinephrine, epinephrine and arginine vasopressin were studied in 6 anuric subjects receiving regular hemodialysis. An iv bolus injection of 8 nmol of ANP followed by infusion at 32 pmol·kg−1·min−1 for 1 h in the pre- and posthemodialysis period was performed. Basal plasma ANP was higher before than after hemodialysis. ANP administration produced a reduction in mean arterial blood pressure accompanied by an elevation of norepinephrine and of plasma renin activity (from 2.49 ± 0.52 to 3.39 ± 0.85 nmol·l−1·h−1 predialysis and from 2.78 ± 0.71 to 3.15 ± 0.86 nmol·l−1·h−1 postdialysis, respectively, mean ± sem; P < 0.05). Plasma aldosterone and cortisol were significantly decreased. Plasma epinephrine and AVP remained unchanged. These hemodynamic and hormonal changes were similar in the pre- and the postdialysis period. These results suggest that 1) ANP causes a fall in mean arterial blood pressure, which in turn induces reflex tachycardia and activation of the sympathetic nervous system without diuresis; 2) the activated sympathetic nervous system as reflected in elevation of plasma norepinephrine may increase plasma renin activity; 3) reduced plasma aldosterone is not influenced by enhancement of the reninangiotensin system; therefore, 4) reduction of plasma aldosterone as well as cortisol is probably due to direct action of ANP, and finally 5) AVP had no direct relation with ANP administration.


1983 ◽  
Vol 65 (1) ◽  
pp. 37-42 ◽  
Author(s):  
Michiko Handa ◽  
Kazuoki Kondo ◽  
Hiromichi Suzuki ◽  
Takao Saruta

1. Oral administration of dexamethasone (about 2.5 × 10-7 mol/day) caused hypertension in rats. The blood pressure rose from 108 ± 6 (mean ± sd) to 156 ± 17 mmHg on the seventh day. The urine volume and urinary excretion of sodium were increased. The plasma renin activity and plasma aldosterone were unchanged. However, the urinary excretions of prostaglandin E2 (UPGE2V) and kallikrein (Ukall.V) were markedly decreased throughout the experiment. 2. With concurrent administration of captopril, the elevation of blood pressure was partially prevented. in this group of rats, the plasma renin activity was elevated and the reductions in UPGE2V and Ukall.V were partially prevented. 3. Based on these results, it is suggested that suppression of the kallikrein—kinin and prostaglandin systems, in addition to involvement of the renin-angiotensin system, is one of the factors contributing to the hypertensive action of dexamethasone.


Sign in / Sign up

Export Citation Format

Share Document