steroid biosynthesis
Recently Published Documents


TOTAL DOCUMENTS

424
(FIVE YEARS 47)

H-INDEX

48
(FIVE YEARS 5)

2021 ◽  
Vol 12 ◽  
Author(s):  
Feng Yang ◽  
Chao-han Li ◽  
Debatosh Das ◽  
Yu-hong Zheng ◽  
Tao Song ◽  
...  

Lycoris sprengeri (L. sprengeri) is an important ornamental bulbous plant, and its numerous varieties in different color forms are widely planted. Multiple color types of petals in L. sprengeri provide us with possibilities to delineate the complicated metabolic networks underlying the biochemical traits behind color formation in this plant species, especially petal color. In this study, we sequenced and annotated a reference transcriptome of pink and white petals of L. sprengeri and analyzed the metabolic role of anthocyanin biosynthesis in regulating color pigment metabolism. Briefly, white and pink petal samples were sequenced with an Illumina platform, to obtain the reads that could be assembled into 100,778 unique sequences. Sequences expressed differentially between white vs. pink petals were further annotated with the terms of Gene Ontology (GO), Clusters of Orthologous Groups (COG), Kyoto Encyclopedia of Genes and Genomes (KEGG), and eggNOG. Gene expression analyses revealed the repression of anthocyanin and steroid biosynthesis enzymes and R2R3 MYB transcription factor (TF) genes in white petals compared to pink petals. Furthermore, the targeted metabolic profiling of anthocyanins revealed that color-related delphinidin (Del) and cyanidin (Cy) pigments are lower in white petals, which correlate well with the reduced gene expression levels of anthocyanin biosynthesis genes. Taken together, it is hypothesized that anthocyanin biosynthesis, steroid biosynthesis, and R2R3 MYB TFs may play vital regulatory roles in petal color development in L. sprengeri. This work provides a valuable genomic resource for flower breeding and metabolic engineering in horticulture and markers for studying the flower trait evolution of L. sprengeri.


Toxicology ◽  
2021 ◽  
pp. 152985
Author(s):  
Kassim Traore ◽  
Prajakta More ◽  
Akhil Adla ◽  
Godwin Dogbey ◽  
Vassilios Papadopoulos ◽  
...  

2021 ◽  
Vol 26 (3) ◽  
pp. 149-157
Author(s):  
Han-Wook Yoo

Primary adrenal insufficiency (PAI) in pediatric age is a rare, but potentially fatal condition caused by diverse etiologies including biochemical defects of steroid biosynthesis, developmental abnormalities of the adrenal gland, or reduced responsiveness to adrenocorticotropic hormone. Compared to adult PAI, pediatric PAI is more often the result of genetic (monogenic, syndromic disorders) than acquired conditions. During the past decade, rare monogenic disorders associated with PAI have helped unravel the underlying novel molecular genetic mechanism. The diagnosis of adrenal insufficiency in children and young infancy is often challenging, usually based on clinical suspicion and endocrine laboratory findings. Pediatric endocrinologists sometimes encounter therapeutic difficulty in finding the balance between undertreatment and overtreatment, determining how to optimize the dose over the patient’s lifetime, and maximizing mimicry of normal cortisol secretion with glucocorticoid replacement therapy.


2021 ◽  
Vol 22 (18) ◽  
pp. 9972
Author(s):  
Emilia Przygrodzka ◽  
Michele R. Plewes ◽  
John S. Davis

The corpus luteum is an endocrine gland that synthesizes the steroid hormone progesterone. luteinizing hormone (LH) is a key luteotropic hormone that stimulates ovulation, luteal development, progesterone biosynthesis, and maintenance of the corpus luteum. Luteotropic and luteolytic factors precisely regulate luteal structure and function; yet, despite recent scientific progress within the past few years, the exact mechanisms remain largely unknown. In the present review, we summarize the recent progress towards understanding cellular changes induced by LH in steroidogenic luteal cells. Herein, we will focus on the effects of LH on inter-organelle communication and steroid biosynthesis, and how LH regulates key protein kinases (i.e., AMPK and MTOR) responsible for controlling steroidogenesis and autophagy in luteal cells.


2021 ◽  
Vol 12 ◽  
Author(s):  
Beide Fu ◽  
Ying Zhou ◽  
Haiyang Liu ◽  
Xiaomu Yu ◽  
Jingou Tong

Cyprinidae is one of the largest family in freshwater fishes, and it is most intensively cultured fish taxon of the world. However, studies about sex determination in this large family is still rear, and one of the reasons is lack of high quality and complete genome. Here, we used nanopore to sequence the genome of a male bighead carp, obtaining contig N50 = 24.25 Mb, which is one of the best assemblies in Cyprinidae. Five males and five females were re-sequenced, and a male-specific region on LG19 was confirmed. We find this region holds many male-specific markers in other Cyprinidae fishes, such as grass carp and silver carp. Transcriptome analyses of hypothalamus and pituitary tissues showed that several sex-specific differentially expressed genes were associated with steroid biosynthesis. The UCH64E gene, located in the male-specific region on LG19, showed higher expression levels in male than female tissues of bighead carp. The methyl-RAD of hypothalamus tissues between males and females indicated that the sexual methylation differences are significant in bighead carp. We also compared the methylation sites recognized using methyl-RAD and nanopore raw reads and found that approximately 73% of the methylation sites identified using methyl-RAD were within nanopore CpG sites.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Xueqin Ran ◽  
Fengbin Hu ◽  
Ning Mao ◽  
Yiqi Ruan ◽  
Fanli Yi ◽  
...  

Abstract Background Although lots of quantitative trait loci (QTLs) and genes present roles in litter size of some breeds, the information might not make it clear for the huge diversity of reproductive capability in pig breeds. To elucidate the inherent mechanisms of heterogeneity of reproductive capability in litter size of Xiang pig, we performed transcriptome analysis for the expression profile in ovaries using RNA-seq method. Results We identified 1,419 up-regulated and 1,376 down-regulated genes in Xiang pigs with large litter size. Among them, 1,010 differentially expressed genes (DEGs) were differently spliced between two groups with large or small litter sizes. Based on GO and KEGG analysis, numerous members of genes were gathered in ovarian steroidogenesis, steroid biosynthesis, oocyte maturation and reproduction processes. Conclusions Combined with gene biological function, twelve genes were found out that might be related with the reproductive capability of Xiang pig, of which, eleven genes were recognized as hub genes. These genes may play a role in promoting litter size by elevating steroid and peptide hormones supply through the ovary and facilitating the processes of ovulation and in vivo fertilization.


Endocrinology ◽  
2021 ◽  
Author(s):  
Qiaozhi Wang ◽  
Yilin Yao ◽  
Xiaoshu Ma ◽  
Baoqiang Fu ◽  
Ningxin Li ◽  
...  

Abstract Octamer-binding transcription factor 4 (OCT4) regulates the pluripotency of stem cells and also plays important roles in granulosa cells growth, which is regulated by follicle-stimulating hormone (FSH). Thyroid hormone (TH) is important for the development and maturation of follicles and the maintenance of various endocrine functions. Although 3,5,3′-triiodothyronine (T3) enhances the effects of FSH on the regulation of the growth of granulosa cells and development of follicles, it is unclear whether and how TH combines with FSH to regulate OCT4 expression in granulosa cells during the preantral to early antral transition stage. Our results showed that T3 enhanced FSH-induced OCT4 expression. However, T3/FSH-induced cellular growth was reduced by OCT4 siRNA. OCT4 knockdown significantly increased the number of apoptotic cell. Moreover, T3 combined with FSH to increase ERβ expression, but did not significantly affect ERα expression. ERβ knockdown dramatically decreased T3/FSH-induced OCT4 expression and cell development and increased cell apoptosis. The PI3K/Akt pathway was involved in hormones inducing OCT4 and ERβ expressions. Furthermore, the hormones regulating OCT4 and ERβ expressions were regulated by cytochrome P450 lanosterol 14a-demethylase (CYP51), a key enzyme in sterol and steroid biosynthesis. T3 and FSH cotreatment potentiated cellular development by upregulating OCT4 expression, which is mediated by CYP51 and ERβ. These regulatory processes are mediated by the PI3K/Akt signaling pathway. These findings suggest that OCT4 mediates the T3 and FSH-induced development of follicles.


Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5158
Author(s):  
Soyol Dashbaldan ◽  
Agata Rogowska ◽  
Cezary Pączkowski ◽  
Anna Szakiel

Triterpenoids and steroids are considered to be important for the fruit quality and health-promoting properties for the consumers. The aim of the study was the determination of the changes in triterpenoid and steroid biosynthesis and the accumulation in hypanthium and achenes of rugosa rose (Rosa rugosa Thunb.) hip during fruit development and ripening at three different phenological stages (young fruits, fully developed unripe fruits, and matured fruits). Triterpenoids and steroids were also determined in the peel and the pulp of the matured hips. The obtained results indicated that the distribution of the analyzed compounds in different fruit tissues is a selective process. The increased rate of hydroxylation of triterpenoids, the deposition of hydroxylated acids in fruit surface layer, and the continuous biosynthesis of phytosterols in achenes versus its gradual repression in hypanthium accompanied by the accumulation of their biosynthetic intermediates and ketone derivatives seem to be characteristic metabolic features of maturation of rugosa rose accessory fruit. These observations, apart from providing the important data on metabolic modifications occurring in developing fruits, might have a practical application in defining fruit parts, particularly rich in bioactive constituents, to enable the development of novel functional products.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jingjing Zhang ◽  
Zhi Wu ◽  
Yujie He ◽  
Xinhui Li ◽  
Jie Li

Grass carp (Ctenopharyngodon idellus) is one of the most economically important aquaculture species and is widely cultured in China. However, its wild populations in many rivers are increasingly declining, and seawater intrusion is one of the most important threats to their survival. However, the mechanisms underlying the decline due to salinity pressure are still unknown. Here, we performed a comparative transcriptome analysis of C. idellus larvae in response to salinity exposures; a total of 481 differentially expressed genes (DEGs) were identified. These DEGs were significantly enriched in eight Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, among which steroid biosynthesis was the most important one, with the highest enrichment score. The pathway plays an important role in the development of the testes and ovary. Interestingly, all DEGs in steroid biosynthesis showed a down regulation, indicating that salinity exposure may pose damage to the fertility of C. idellus. Furthermore, three immunity-associated pathways (cytokine–cytokine receptor interaction, Toll-like receptor signaling pathway, and NOD-like receptor signaling pathway) were also significantly enriched, suggesting impaired immunity and a high risk of disease infection under salinity exposure. Overall, damage to both fertility and immunity would decrease the number of offspring and increase the risk of death due to disease infection. Our results provide a potential molecular mechanism underlying the decline of wild C. idellus populations in the Pearl River.


Sign in / Sign up

Export Citation Format

Share Document