Kinetic Modeling of Carbon Nanotube Production and Minimization of Amorphous Carbon Overlayer Deposition in Floating Catalyst Method

Author(s):  
Leila Samandari-Masouleh ◽  
Navid Mostoufi ◽  
AA Khodadadi ◽  
Y. Mortazavi ◽  
Morteza Maghrebi

Abstract A kinetic modeling of longitudinal and depth profiles of multiwall carbon nanotubes (MWCNTs) synthesis using xylene and ferrocene in a floating catalyst (FC) reactor is hereby reported. Both amorphous and arrays of carbon nanotubes (CNTs) are formed, whose ratio sharply increases along a growth window and from the bottom to top of the arrays. A model is presented for the rate of CNTs synthesis as well as the rate of amorphous carbon formation which undesirably forms on the nanotube walls and reduces nanotubes quality and synthesis efficiency. Based on the amounts of amorphous carbons and CNTs formed in the reactor, kinetic parameters of formation of these species from xylene were estimated. It is shown that, as the temperature increases, the weight ratio of amorphous carbon to CNTs shows minimum at 970 K. The ratio increases with decreasing the amount of deposited iron. Increasing pressure and carrier gas is found to have marginal effects on producing CNTs with lower amounts of amorphous carbon. Higher surface density of CNTs (number of CNTs per surface area) and their diameter, result in a significantly higher amount of amorphous carbon deposition.

2018 ◽  
Author(s):  
Gen Hayase

By exploiting the dispersibility and rigidity of boehmite nanofibers (BNFs) with a high aspect ratio of 4 nm in diameter and several micrometers in length, multiwall-carbon nanotubes (MWCNTs) were successfully dispersed in aqueous solutions. In these sols, the MWCNTs were dispersed at a ratio of about 5–8% relative to BNFs. Self-standing BNF–nanotube films were also obtained by filtering these dispersions and showing their functionality. These films can be expected to be applied to sensing materials.


2016 ◽  
Vol 25 (4) ◽  
pp. 459-464 ◽  
Author(s):  
M.I. Abduo ◽  
A.S. Dahab ◽  
Hesham Abuseda ◽  
Abdulaziz M. AbdulAziz ◽  
M.S. Elhossieny

2021 ◽  
Vol 4 (3) ◽  
pp. 2345-2350
Author(s):  
Chaofeng Wang ◽  
Yi Hao ◽  
Yue Wang ◽  
Huijia Song ◽  
Sameer Hussain ◽  
...  

2015 ◽  
Vol 1782 ◽  
pp. 1-8
Author(s):  
Ning-Qin Deng ◽  
He Tian ◽  
Qing-Tang Xue ◽  
Zhe Wang ◽  
Hai-Ming Zhao ◽  
...  

ABSTRACTNanogenerators (NGs) have great potential to solve the problems of energy depletion and environmental pollution. Here, two types of flexible nanogenerators (FNGs) based on graphene oxide (GO) and multiwall carbon nanotubes (MW-CNTs) are presented. The peak output voltage and current of GO based FNG reached up to 2 V and 30 nA, respectively, under 15 N force at 1 Hz. Moreover, the output voltage could be improved to 34.4 V when the frequency was increased to 10 Hz. It was also found the output voltage increased from 0.1 V to 2.0 V using a released GO structure. The other FNG was made by MW-CNTs mixed with ZnO nanoparticles (NPs). Its output voltage and power reached up to 7.5 V and 18.75 mW, respectively, which is much larger than that of bare ZnO based FNG. Furthermore, a peak voltage of 30 V could be gained by stamping one’s foot on the FNG. Finally, a modified NG was fabricated using four springs and two flexible layers. As a result, the voltage and power reached up to 9 V and 27mW, respectively. These works may bring out broad applications in energy harvesting.


Sign in / Sign up

Export Citation Format

Share Document