2011 ◽  
Vol 32 (3) ◽  
pp. 1019-1041 ◽  
Author(s):  
EZEQUIEL MADERNA

AbstractWe consider N-body problems with potential 1/r2κ, where κ∈(0,1), including the Newtonian case (κ=1/2). Given R>0 and T>0, we find a uniform upper bound for the minimal action of paths binding, in time T, any two configurations which are contained in some ball of radius R. Using cluster partitions, we obtain from these estimates the Hölder regularity of the critical action potential (i.e. of the minimal action of paths binding two configurations in free time). As an application, we establish the weak KAM theorem for these N-body problems, i.e. we prove the existence of fixed points of the Lax–Oleinik semigroup, and we show that they are global viscosity solutions of the corresponding Hamilton–Jacobi equation. We also prove that there are invariant solutions for the action of isometries on the configuration space.


2012 ◽  
Vol 142 (6) ◽  
pp. 1131-1177 ◽  
Author(s):  
Patrick Bernard

The weak KAM theory was developed by Fathi in order to study the dynamics of convex Hamiltonian systems. It somehow makes a bridge between viscosity solutions of the Hamilton–Jacobi equation and Mather invariant sets of Hamiltonian systems, although this was fully understood only a posteriori. These theories converge under the hypothesis of convexity, and the richness of applications mostly comes from this remarkable convergence. In this paper, we provide an elementary exposition of some of the basic concepts of weak KAM theory. In a companion paper, Albert Fathi exposed the aspects of his theory which are more directly related to viscosity solutions. Here, on the contrary, we focus on dynamical applications, even if we also discuss some viscosity aspects to underline the connections with Fathi's lecture. The fundamental reference on weak KAM theory is the still unpublished book Weak KAM theorem in Lagrangian dynamics by Albert Fathi. Although we do not offer new results, our exposition is original in several aspects. We only work with the Hamiltonian and do not rely on the Lagrangian, even if some proofs are directly inspired by the classical Lagrangian proofs. This approach is made easier by the choice of a somewhat specific setting. We work on ℝd and make uniform hypotheses on the Hamiltonian. This allows us to replace some compactness arguments by explicit estimates. For the most interesting dynamical applications, however, the compactness of the configuration space remains a useful hypothesis and we retrieve it by considering periodic (in space) Hamiltonians. Our exposition is centred on the Cauchy problem for the Hamilton–Jacobi equation and the Lax–Oleinik evolution operators associated to it. Dynamical applications are reached by considering fixed points of these evolution operators, the weak KAM solutions. The evolution operators can also be used for their regularizing properties; this opens an alternative route to dynamical applications.


2012 ◽  
Vol 142 (6) ◽  
pp. 1193-1236 ◽  
Author(s):  
Albert Fathi

We introduce the notion of a viscosity solution for the first-order Hamilton–Jacobi equation, in the more general setting of manifolds, to obtain a weak KAM theory using only tools from partial differential equations. This work should be accessible to people with no prior knowledge of the subject.


Author(s):  
Alfonso Sorrentino

This chapter describes another interesting approach to the study of invariant sets provided by the so-called weak KAM theory, developed by Albert Fathi. This approach can be considered as the functional analytic counterpart of the variational methods discussed in the previous chapters. The starting point is the relation between KAM tori (or more generally, invariant Lagrangian graphs) and classical solutions and subsolutions of the Hamilton–Jacobi equation. It introduces the notion of weak (non-classical) solutions of the Hamilton–Jacobi equation and a special class of subsolutions (critical subsolutions). In particular, it highlights their relation to Aubry–Mather theory.


2013 ◽  
Vol 2013 ◽  
pp. 1-12
Author(s):  
Porfirio Toledo

The purpose of this paper is to study the existence of solutions of a Hamilton-Jacobi equation in a minimax discrete-time case and to show different characterizations for a real number called the critical value, which plays a central role in this work. We study the behavior of solutions of this problem using tools of game theory to obtain a “fixed point” of the Lax operator associated, considering some facts of weak KAM theory to interpret these solutions as discrete viscosity solutions. These solutions represent the optimal payoff of a zero-sum game of two players, with increasingly long time payoffs. The developed techniques allow us to study the behavior of an infinite time game without using discount factors or average actions.


2020 ◽  
Vol 23 (3) ◽  
pp. 306-311
Author(s):  
Yu. Kurochkin ◽  
Dz. Shoukavy ◽  
I. Boyarina

The immobility of the center of mass in spaces of constant curvature is postulated based on its definition obtained in [1]. The system of two particles which interact through a potential depending only on the distance between particles on a three-dimensional sphere is considered. The Hamilton-Jacobi equation is formulated and its solutions and trajectory equations are found. It was established that the reduced mass of the system depends on the relative distance.


Author(s):  
Jennifer Coopersmith

Hamilton’s genius was to understand what were the true variables of mechanics (the “p − q,” conjugate coordinates, or canonical variables), and this led to Hamilton’s Mechanics which could obtain qualitative answers to a wider ranger of problems than Lagrangian Mechanics. It is explained how Hamilton’s canonical equations arise, why the Hamiltonian is the “central conception of all modern theory” (quote of Schrödinger’s), what the “p − q” variables are, and what phase space is. It is also explained how the famous conservation theorems arise (for energy, linear momentum, and angular momentum), and the connection with symmetry. The Hamilton-Jacobi Equation is derived using infinitesimal canonical transformations (ICTs), and predicts wavefronts of “common action” spreading out in (configuration) space. An analogy can be made with geometrical optics and Huygen’s Principle for the spreading out of light waves. It is shown how Hamilton’s Mechanics can lead into quantum mechanics.


Author(s):  
Razvan Gabriel Iagar ◽  
Philippe Laurençot

A classification of the behaviour of the solutions f(·, a) to the ordinary differential equation (|f′|p-2f′)′ + f - |f′|p-1 = 0 in (0,∞) with initial condition f(0, a) = a and f′(0, a) = 0 is provided, according to the value of the parameter a > 0 when the exponent p takes values in (1, 2). There is a threshold value a* that separates different behaviours of f(·, a): if a > a*, then f(·, a) vanishes at least once in (0,∞) and takes negative values, while f(·, a) is positive in (0,∞) and decays algebraically to zero as r→∞ if a ∊ (0, a*). At the threshold value, f(·, a*) is also positive in (0,∞) but decays exponentially fast to zero as r→∞. The proof of these results relies on a transformation to a first-order ordinary differential equation and a monotonicity property with respect to a > 0. This classification is one step in the description of the dynamics near the extinction time of a diffusive Hamilton–Jacobi equation with critical gradient absorption and fast diffusion.


Sign in / Sign up

Export Citation Format

Share Document