7. State space modelling and analysis of linear fractional-order systems

2017 ◽  
pp. 221-242
2008 ◽  
Vol 42 (6-8) ◽  
pp. 825-838 ◽  
Author(s):  
Saïd Guermah ◽  
Saïd Djennoune ◽  
Maâmar Bettayeb

2018 ◽  
Vol 26 (2) ◽  
pp. 497-506 ◽  
Author(s):  
Pierre E. Jacob ◽  
Seyed Mohammad Mahdi Alavi ◽  
Adam Mahdi ◽  
Stephen J. Payne ◽  
David A. Howey

2009 ◽  
Author(s):  
T. Djamah ◽  
R. Mansouri ◽  
M. Bettayeb ◽  
S. Djennoune ◽  
Lotfi Beji ◽  
...  

Author(s):  
Jocelyn Sabatier ◽  
Mathieu Merveillaut ◽  
Ludovic Fenetau ◽  
Alain Oustaloup

In this paper, fractional order system observability is discussed. A representation of these systems that involves a classical linear integer system and a system described by a parabolic equation is used to define the system real state and to conclude that the system state cannot be observed. However, it is also shown that the state space like representation usually encountered in the literature for fractional systems, can be used to design Luenberger like observers that permit an estimation of important variables in the system.


2017 ◽  
Vol 40 (6) ◽  
pp. 1819-1835 ◽  
Author(s):  
Behrouz Safarinejadian ◽  
Nasrin Kianpour ◽  
Mojtaba Asad

This paper presents new estimation methods for discrete fractional-order state-space systems with coloured measurement noise. A novel approach is proposed to convert a fractional system with coloured measurement noise to a system with white measurement noise in which the process and measurement noises are correlated with each other. In this paper, two new Kalman filter algorithms for fractional-order linear state-space systems with coloured measurement noise, as well as a new extended Kalman filter algorithm for state estimation in nonlinear fractional-order state-space systems with coloured measurement noise, are proposed. The accuracy of the equations and relations is confirmed in several theorems. The validity and effectiveness of the proposed algorithms are verified by simulation results and compared with previous work. Results show that for linear and nonlinear fractional-order systems with coloured noise, the proposed methods are more accurate than conventional methods regarding estimation error and estimation error covariance. Simulation results demonstrate that the proposed algorithms can accurately perform estimation in fractional-order systems with coloured measurement noise.


2008 ◽  
Vol 42 (6-8) ◽  
pp. 939-951 ◽  
Author(s):  
Tounsia Jamah ◽  
Rachid Mansouri ◽  
Saïd Djennoune ◽  
Maâmar Bettayeb

2020 ◽  
Vol 9 (11) ◽  
pp. 9769-9780
Author(s):  
S.G. Khavale ◽  
K.R. Gaikwad

This paper is dealing the modified Ohm's law with the temperature gradient of generalized theory of magneto-thermo-viscoelastic for a thermally, isotropic and electrically infinite material with a spherical region using fractional order derivative. The general solution obtained from Laplace transform, numerical Laplace inversion and state space approach. The temperature, displacement and stresses are obtained and represented graphically with the help of Mathcad software.


Sign in / Sign up

Export Citation Format

Share Document