The role of biologically inspired design to 4D printing development

2021 ◽  
pp. 205-214
Author(s):  
Silvia Titotto
Author(s):  
Amanda Chou ◽  
L.H. Shu

AbstractWe aim to examine the potential of using analogies in design education and to compare the roles of analogies in explaining versus inspiring in engineering design. We review existing research in analogical thinking, with a focus on scientific discourse and education. Then we explore the role of analogies in design education in making concepts more relatable by asking six participants in a graduate-level design course to generate analogies for course topics. We describe criteria developed to evaluate the analogies and present these evaluations. We then asked participants to perform divergent thinking tests, but we found no significant correlation between these and analogy scores. The participants were also asked to reflect on what constitutes an effective analog, describe their process of identifying analogies, and provide their definitions of analogies. We describe possible links between these comments and the ratings of their analogies. We then draw on results in using analogies in pedagogy to inform and reflect on obstacles we encountered in the use of analogies to inspire. Specifically, we related them to our experience with biomimetic or biologically inspired design, where we used a natural-language search approach to identify relevant analogies. Three aspects discussed are familiarity of source analogies, boundaries of parallels between source analogies and target concepts, and concreteness of source analogies. Finally, we discuss possible pedagogical benefits of eliciting analogies on course topics from students, namely, using the elicited analogies as tools for improved student engagement as well as more prompt instructor feedback.


2019 ◽  
Vol 11 (4) ◽  
Author(s):  
Alexander Agboola-Dobson ◽  
Guowu Wei ◽  
Lei Ren

Recent advancements in powered lower limb prostheses have appeased several difficulties faced by lower limb amputees by using a series-elastic actuator (SEA) to provide powered sagittal plane flexion. Unfortunately, these devices are currently unable to provide both powered sagittal plane flexion and two degrees of freedom (2-DOF) at the ankle, removing the ankle’s capacity to invert/evert, thus severely limiting terrain adaption capabilities and user comfort. The developed 2-DOF ankle system in this paper allows both powered flexion in the sagittal plane and passive rotation in the frontal plane; an SEA emulates the biomechanics of the gastrocnemius and Achilles tendon for flexion while a novel universal-joint system provides the 2-DOF. Several studies were undertaken to thoroughly characterize the capabilities of the device. Under both level- and sloped-ground conditions, ankle torque and kinematic data were obtained by using force-plates and a motion capture system. The device was found to be fully capable of providing powered sagittal plane motion and torque very close to that of a biological ankle while simultaneously being able to adapt to sloped terrain by undergoing frontal plane motion, thus providing 2-DOF at the ankle. These findings demonstrate that the device presented in this paper poses radical improvements to powered prosthetic ankle-foot device (PAFD) design.


Author(s):  
Camila Freitas Salgueiredo ◽  
Armand Hatchuel

AbstractIs biologically inspired design only an analogical transfer from biology to engineering? Actually, nature does not always bring “hands-on” solutions that can be analogically applied in classic engineering. Then, what are the different operations that are involved in the bioinspiration process and what are the conditions allowing this process to produce a bioinspired design? In this paper, we model the whole design process in which bioinspiration is only one element. To build this model, we use a general design theory, concept–knowledge theory, because it allows one to capture analogy as well as all other knowledge changes that lead to the design of a bioinspired solution. We ground this model on well-described examples of biologically inspired designs available in the scientific literature. These examples include Flectofin®, a hingeless flapping mechanism conceived for façade shading, and WhalePower technology, the introduction of bumps on the leading edge of airfoils to improve aerodynamic properties. Our modeling disentangles the analogical aspects of the biologically inspired design process, and highlights the expansions occurring in both knowledge bases, scientific (nonbiological) and biological, as well as the impact of these expansions in the generation of new concepts (concept partitioning). This model also shows that bioinspired design requires a special form of collaboration between engineers and biologists. Contrasting with the classic one-way transfer between biology and engineering that is assumed in the literature, the concept–knowledge framework shows that these collaborations must be “mutually inspirational” because both biological and engineering knowledge expansions are needed to reach a novel solution.


Author(s):  
Swaroop S. Vattam ◽  
Michael Helms ◽  
Ashok K. Goel

Biologically inspired engineering design is an approach to design that espouses the adaptation of functions and mechanisms in biological sciences to solve engineering design problems. We have conducted an in situ study of designers engaged in biologically inspired design. Based on this study we develop here a macrocognitive information-processing model of biologically inspired design. We also compare and contrast the model with other information-processing models of analogical design such as TRIZ, case-based design, and design patterns.


1997 ◽  
Vol 479 ◽  
Author(s):  
Mohan Srinivasarao ◽  
Luis Padilla

Brilliant, iridescent colors found on the bodies and wings of many birds, butterflies and moths are produced by structural variations and have been the subject of study for centuries. Such brilliant colors have been described as metallic colors due to the saturation or purity of the color produced and have attracted the attention of great scientists like Newton, Michelson and Lord Rayleigh. It was recognized early on that such colors arise from physical effects such as interference or diffraction as opposed to colors that are normally produced due to the presence of chromophores which absorb or emit light. Common examples of physical colors are some butterfly wings [1], color of Indigo snake skin [2], hummingbird feathers [3,4], arthropod cuticles [which are due to selective reflection of color from the solidified cholesteric phase of chitin crystallites] [5], gemstones like opal [6,7], and some crystals like potassium chlorate [8]. While the origins of such colors are well understood the properties of color and color specification have not received much attention.


2021 ◽  
Author(s):  
Roxanne A. Moore ◽  
Hoda Ehsan ◽  
Euisun Kim ◽  
Michael Helms ◽  
Meltem Alemdar ◽  
...  

2013 ◽  
pp. 1532-1551
Author(s):  
Samuel Romero ◽  
Christian Morillas ◽  
Antonio Martínez ◽  
Begoña del Pino ◽  
Francisco Pelayo ◽  
...  

Neuroengineering is an emerging research field combining the latest findings from neuroscience with developments in a variety of engineering disciplines to create artificial devices, mainly for therapeutical purposes. In this chapter, an application of this field to the development of a visual neuroprosthesis for the blind is described. Electrical stimulation of the visual cortex in blind subjects elicits the perception of visual sensations called phosphenes, a finding that encourages the development of future electronic visual prostheses. However, direct stimulation of the visual cortex would miss a significant degree of image processing that is carried out by the retina. The authors describe a biologically-inspired retina-like processor designed to drive the implanted stimulator using visual inputs from one or two cameras. This includes dynamic response modeling with minimal latency. The outputs of the retina-like processor are comparable to those recorded in biological retinas that are exposed to the same stimuli and allow estimation of the original scene.


Sign in / Sign up

Export Citation Format

Share Document