passive rotation
Recently Published Documents


TOTAL DOCUMENTS

73
(FIVE YEARS 16)

H-INDEX

18
(FIVE YEARS 1)

2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Jinfeng Zhang ◽  
Yilei Zhu ◽  
Yalin Li ◽  
Ping Huang ◽  
Hui Xu ◽  
...  

Through numerical simulations, this work analyzes the unsteady pressure pulsation characteristics in new type of dishwasher pump with double tongue volute and single tongue volute, under volute static and rotation conditions. Likewise, the performance tests were also carried out to verify the numerical results. Multiple monitoring points were set at the various positions of new type dishwasher pump to collect the pressure pulsation signals, and the relevant frequency signals were obtained via Fast Fourier Transform, to analyze the influence of volute tongue and its passive speed on the pump performance. The results reveal that when the double tongue volute is stationary, the pressure pulsation amplitudes increase from the impeller inlet to the impeller outlet. Under the influence of shedding vortex, the pressure pulsation in the lateral region of tongue becomes disorganized, and the main frequency of pressure pulsation changes from blade frequency to shaft frequency. In addition, compared with the static volute, double tongue volute can effectively guide the water flow out of the tongue during the rotation process, thus ensuring good periodicity for pressure pulsation in the tongue region. Accordingly, a volute reference scheme with passive rotation speed is proposed in this study, which can effectively improve the pressure pulsation at tongue position, and provides a new idea for rotor-stator interference to guide the innovation of dishwasher.


i-Perception ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 204166952110706
Author(s):  
Akio Honda ◽  
Sayaka Tsunokake ◽  
Yôiti Suzuki ◽  
Shuichi Sakamoto

This paper reports on the deterioration in sound-localization accuracy during listeners’ head and body movements. We investigated the sound-localization accuracy during passive body rotations at speeds in the range of 0.625–5 °/s. Participants were asked to determine whether a 30-ms noise stimuli emerged relative to their subjective-straight-ahead reference. Results indicated that the sound-localization resolution degraded with passive rotation, irrespective of the rotation speed, even at speeds of 0.625 °/s.


2021 ◽  
Vol 12 (2) ◽  
pp. 1027-1036
Author(s):  
Qitao Huang ◽  
Peng Wang ◽  
Bowen Li ◽  
Qingjun Yang

Abstract. With the development of motor control technology, the electrically driven Stewart platform (EDSP), equipped with a ball screw or lead screw, is being widely used as a motion simulator, end effector, and vibration isolator. The motor drives the lead screw on each driven branch chain to realize 6-DOF motion of the moving platform. The control loop of the EDSP adopts the rotor position as a feedback signal from the encoder or resolver on the motor. When the moving platform of the EDSP performs translational or rotational motion, the lead screw on each driven branch chain passively generates a relative rotation between its screw and nut in addition to its original sliding motion. This type of passive rotation (PR) of the lead screw does not disturb the motor; hence, it cannot be detected by the position sensor attached to the corresponding motor. Thus, the driven branch chains cause unexpected length changes because of PR. As a result, the PR generates posture errors on the moving platform during operation. In our research, the PR on the EDSP was modeled and analyzed according to the geometry configuration of EDSP. Then, a control method to compensate for the posture errors caused by the PR was proposed. Finally, the effectiveness of the analysis process and compensation control method were validated; the improvement in pose accuracy was confirmed both by simulation and experiments.


Machines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 288
Author(s):  
Yilei Zhu ◽  
Jinfeng Zhang ◽  
Yalin Li ◽  
Ping Huang ◽  
Hui Xu ◽  
...  

A pressure pulsation experiment of a dishwasher pump with a passive rotation double-tongue volute was carried out and compared with the pressure pulsation of a single-tongue volute and a static double-tongue volute. The pressure pulsation of the three volute models was compared and analyzed from two aspects of different impeller speeds and different monitoring points. The frequency domain and time–frequency domain of pressure pulsation were obtained by a Fourier transform and short-time Fourier transform, respectively. The results showed that the average pressure of each monitoring point on the rotating double-tongue volute was the smallest and that on the single-tongue volute was the largest. When the impeller rotates at 3000 rpm, there were eight peaks and valleys in the pressure pulsation time domain curve of the single-tongue volute, while the double-tongue volute was twice that of the single-tongue volute. Under different impeller speeds, the changing trends of pressure pulsation time and frequency domain curves of static and rotating double-tongue volutes at monitoring point p1 are basically the same. Therefore, a volute reference scheme with passive rotation speed is proposed in this study, which can effectively improve the flow pattern and reduce pressure inside the dishwasher pump, and also provide a new idea for rotor–rotor interference to guide the innovation of dishwashers.


Author(s):  
Mohamed Ibrahim ◽  
Pablo Narbona ◽  
Patrick J. Denard ◽  
Paolo Arrigoni ◽  
Philippe Collin ◽  
...  

2020 ◽  
Vol 27 (4) ◽  
pp. 65-72
Author(s):  
Igor O. Golubev ◽  
Natalia Yu. Matveeva ◽  
Mikhail L. Maksarov

Relevance. Recent studies show that even with damage to the structures of the triangular fibrocartilaginous complex (primary stabilizer), instability of the distal ray-elbow joint does not develop in some cases. Studies carried out by a number of authors prove that the distal interosseous membrane of the forearm can influence the stability of the joint and be a secondary stabilizer for it. Aim of the study. To study the variability in the structure of the distal interosseous membrane of the forearm using anatomical material and determine the effect of the distal interosseous membrane on the stability of the distal ray-elbow joint. Using ultrasound to determine the variability of the structure of the distal interosseous membrane of the forearm. Materials and methods. Material for our study was 10 pairs of anatomical specimens of the upper extremities. The functional viability was assessed by passive rotation of the anatomical material of the forearm. Changes in the tension of the distal interosseous membrane, its additional formations and the capsule of the distal ray-elbow joint were observed. Ultrasound was chosen as an instrumental method for visualizing the distal interosseous membrane of the forearm and its structures. In the course of this work, 30 volunteers of both sexes and different ages were examined. The study was carried out: maximum pronation (position of the sensor back) and maximum supination (position of the sensor palmar). Results. In the course of the anatomical study, we determined that in 6 pairs of anatomical material, the distal interosseous membrane is a thin transparent connective tissue structure. No additional formations in the form of thickening were found. In 4 pairs of preparations, which amounted to 40% of the total amount in the distal interosseous membrane, there were additional formations in the form of thickening of the membrane this is the distal oblique bundle and the distal ray-the ulnar tract. During the functional study, it was revealed that during pronation of the forearm, the distal membrane and dorsal capsule are stretched, which in turn holds the head of the ulna in the sigmoid notch of the radius. After conducting ultrasound, we determined the variability in the structure of the distal interosseous membrane of the forearm. The distal oblique bundle is visualized as a linear hyperechoic formation. Of the 30 surveyed, this formation was identified in 13 women (92.8%) and 1 man (7.1%), which in percentage terms was 43%. Conclusion. After conducting anatomical examination, we determined the variability in the structure of the distal interosseous membrane of the forearm in the form of the presence of thickenings the distal oblique bundle and the distal ray-ulnar tract, and determined the effect of these structures on the stability of the distal ray-elbow joint. An ultrasound scan also identified the features in the structure of the distal interosseous membrane in the form of hyperechoic formation.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Chenyang Wang ◽  
Weiping Zhang ◽  
Junqi Hu ◽  
Jiaxin Zhao ◽  
Yang Zou

This study proposes a modified quasisteady aerodynamic model for the sub-100-milligram insect-inspired flapping-wing robot presented by the authors in a previous paper. The model, which is based on blade-element theory, considers the aerodynamic mechanisms of circulation, dissipation, and added-mass, as well as the inertial effect. The aerodynamic force and moment acting on the wing are calculated based on the two-degree-of-freedom (2-DOF) wing kinematics of flapping and rotating. In order to validate the model, we used a binocular high-speed photography system and a customized lift measurement system to perform simultaneous measurements of the wing kinematics and the lift of the robot under different input voltages. The results of these measurements were all in close agreement with the estimates generated by the proposed model. In addition, based on the model, this study analyzes the 2-DOF flapping-wing dynamics of the robot and provides an estimate of the passive rotation—the main factor in generating lift—from the measured flapping kinematics. The analysis also reveals that the calculated rotating kinematics of the wing under different input voltages accord well with the measured rotating kinematics. We expect that the model presented here will be useful in developing a control strategy for our sub-100 mg insect-inspired flapping-wing robot.


2020 ◽  
Author(s):  
Mohamadreza Kharazi ◽  
Sebastian Bohm ◽  
Christos Theodorakis ◽  
Falk Mersmann ◽  
Adamantios Arampatzis

AbstractThe purpose of the current study was to assess Achilles tendon (AT) mechanical loading and strain energy during locomotion using a new in vivo approach for measuring AT length that considers the AT curve-path shape. Eleven participants walked at 1.4 m/s and ran at 2.5 m/s and 3.5 m/s on a treadmill. AT length, defined as the distance between its origin at the gastrocnemius medialis myotendinous junction (MTJ) and the calcaneal insertion, was determined experimentally by integrating kinematics and ultrasound analysis. Small foil markers were placed on the skin covering the AT path from the origin to the insertion, and the MTJ, tracked using ultrasonography, was projected to the reconstructed skin to account for their misalignment. Skin-to-bone displacements were assessed during a passive rotation (5 °/s) of the ankle joint and considered in the calculation of AT length. Force and strain energy of the AT during locomotion were calculated by fitting a quadratic function to the experimentally measured tendon force-length curve obtained from maximum voluntary isometric contractions. Maximum AT strain and force were affected by speed (p<0.05, ranging from 4.0 to 4.9% strain and 1.989 to 2.556 kN), yet insufficient in magnitude to be considered an effective stimulus for tendon adaptation. Further, we found a recoil of elastic strain energy at the beginning of the stance phase of running (70-77 ms after touch down) between 1.7 ±0.6 and 1.9 ±1.1 J, which might be functionally relevant for running efficiency.Summary statementA new accurate in vivo approach to assess Achilles tendon strain, force and strain energy during locomotion.


2020 ◽  
Vol 12 (7) ◽  
pp. 168781402094007
Author(s):  
Guljaina Kazezkhan ◽  
Binbin Xiang ◽  
Na Wang ◽  
Aili Yusup

The NanShan Radio Telescope is a 26-m fully steerable radio telescope, and it adopts a 6-UPU Stewart platform with electric motors to adjust and align the position of the subreflector. In order to analyze the actual dynamic performance and control the Stewart platform of the NanShan Radio Telescope, this article models the inverse dynamic of the Stewart platform using the virtual work approach. The model improves the accuracy of the dynamic equations and considered the pitching motion of the base platform in the practical application of the radio telescope. Dynamic simulations of the Stewart platform are implemented, the conditions of the passive rotation of the piston of actuators are considered, and the results show that the effect of the passive rotation of the pistons of the actuators is important to obtain more accurate result. The conditions of the system under the different elevation angles of the radio telescope are also considered, and the results show that the change of the elevation angles of the radio telescope has a great impact on the driving forces of the Stewart platform. It is known from the analysis that the passive rotation of pistons of actuators and the elevation movement of the primary reflector of the radio telescope are not ignorable for the precise analysis and control of the Stewart platform of the NanShan Radio Telescope.


Sign in / Sign up

Export Citation Format

Share Document