Chapter 7 Antimony soil–plant transfer

Antimony ◽  
2021 ◽  
pp. 147-172
Author(s):  
Susan C. Wilson ◽  
Lakmini P. Egodawatta ◽  
Susan Tandy
Keyword(s):  
Author(s):  
Tooran Emami ◽  
John M. Watkins

A graphical technique for finding all proportional integral derivative (PID) controllers that stabilize a given single-input-single-output (SISO) linear time-invariant (LTI) system of any order system with time delay has been solved. In this paper a method is introduced that finds all PID controllers that also satisfy an H∞ complementary sensitivity constraint. This problem can be solved by finding all PID controllers that simultaneously stabilize the closed-loop characteristic polynomial and satisfy constraints defined by a set of related complex polynomials. A key advantage of this procedure is the fact that it does not require the plant transfer function, only its frequency response.


2005 ◽  
Vol 34 (6) ◽  
pp. 1972-1979 ◽  
Author(s):  
T. Centofanti ◽  
R. Penfield ◽  
A. Albrecht ◽  
S. Pellerin ◽  
H. Flühler ◽  
...  

2016 ◽  
Vol 10 (3) ◽  
pp. 29-33 ◽  
Author(s):  
Mohamad Sakizadeh ◽  
Rouhollah Mirzaei ◽  
Hadi Ghorbani ◽  
◽  
◽  
...  

2021 ◽  
Author(s):  
Franck Albinet ◽  
Gerd Dercon ◽  
Tetsuya Eguchi

<p>The Joint IAEA/FAO Division of Nuclear Techniques in Food and Agriculture, through its Soil and Water Management & Crop Nutrition Laboratory (SWMCNL), launched in October 2019, a new Coordinated Research Project (D15019) called “Monitoring and Predicting Radionuclide Uptake and Dynamics for Optimizing Remediation of Radioactive Contamination in Agriculture''. Within this context, the high-throughput characterization of soil properties in general and the estimation of soil-to-plant transfer factors of radionuclides are of critical importance.</p><p>For several decades, soil researchers have been successfully using near and mid-infrared spectroscopy (MIRS) techniques to estimate a wide range of soil physical, chemical and biological properties such as carbon (C), Cation Exchange Capacities (CEC), among others. However, models developed were often limited in scope as only small and region-specific MIR spectra libraries of soils were accessible.</p><p>This situation of data scarcity is changing radically today with the availability of large and growing library of MIR-scanned soil samples maintained by the National Soil Survey Center (NSSC) Kellogg Soil Survey Laboratory (KSSL) from the United States Department of Agriculture (USDA-NRCS) and the Global Soil Laboratory Network (GLOSOLAN) initiative of the Food Agency Organization (FAO). As a result, the unprecedented volume of data now available allows soil science researchers to increasingly shift their focus from traditional modeling techniques such as PLSR (Partial Least Squares Regression) to classes of modeling approaches, such as Ensemble Learning or Deep Learning, that have proven to outperform PLSR on most soil properties prediction in a large data regime.</p><p>As part of our research, the opportunity to train higher capacity models on the KSSL large dataset (all soil taxonomic orders included ~ 50K samples) makes it possible to reach a quality of prediction for exchangeable potassium so far unsurpassed with a Residual Prediction Deviation (RPD) around 3. Potassium is known for its difficulty of being predicted but remains extremely important in the context of remediation of radioactive contamination after a nuclear accident. Potassium can help reduce the uptake of radiocaesium by crops, as it competes with radiocaesium in soil-to-plant transfer.</p><p>To ensure informed decision making, we also guarantee that (i) individual predictions uncertainty is estimated (using Monte Carlo Dropout) and (ii) individual predictions can be interpreted (i.e. how much specific MIRS wavenumber regions contribute to the prediction) using methods such as Shapley Additive exPlanations (SHAP) values.</p><p>SWMCNL is now a member of the GLOSOLAN network, which helps enhance the usability of MIRS for soil monitoring worldwide. SWMCNL is further developing training packages on the use of traditional and advanced mathematical techniques to process MIRS data for predicting soil properties. This training package has been tested in October 2020 with thirteen staff members of the FAO/IAEA Laboratories in Seibersdorf, Austria.</p>


Plant Disease ◽  
2021 ◽  
Author(s):  
Ravi Bika ◽  
Warren Copes ◽  
Fulya Baysal-Gurel

Calonectria pseudonaviculata and Pseudonectria foliicola causing the infamous ‘boxwood blight’ and ‘Volutella blight’, respectively, are a constant threat to the boxwood production and cut boxwood greenery market. Both pathogens cause significant economic loss to all parties (growers, retailer, and customers) in the horticultural chain. The objective of this study was to evaluate efficacy of disinfesting chemicals [quaternary ammonium compound (QAC), peroxy, acid, alcohol, chlorine, cleaner] in preventing plant-to-plant transfer of C. pseudonaviculata and P. foliicola via cutting tools, as well as reduction of postharvest boxwood blight and Volutella blight disease severity in harvested boxwood greenery. First, an in vitro study was conducted to select products and doses that completely or near-completely inhibited conidial germination of C. pseudonaviculata and P. foliicola. The selected treatments were also tested for their ability to reduce plant-to-plant transfer of C. pseudonaviculata and P. foliicola and manage postharvest boxwood blight and Volutella blight in boxwood cuttings. For the plant-to-plant transfer study, Felco 19 shears were used as a tool for mechanical transfer of fungal conidia. The blades of Felco 19 shears were exposed to a conidial suspension of C. pseudonaviculata or P. foliicola by cutting a 1 cm diameter cotton roll that had been dipped into a fungal suspension. Disease-free boxwood rooted cuttings (10 cm height) were pruned with the contaminated shears. The Felco 19 shears were equipped with a mounted miniature sprayer connected to a pressurized reservoir of treatment solution that automatically sprayed the blade and plant surface while cutting. The influence of accumulated sap on the shear blade was studied through 1- or 10-cut pruning variable on test plants and screened for the efficacy of treatments. Then, the boxwood rooted cuttings were transplanted and incubated in room conditions (21 °C, 60% RH) with 12 h of fluorescent light; data evaluation on disease severity was done weekly for a month. Disease progress [area under disease progress curve (AUDPC)] was calculated. In another study, postharvest dip application treatments were used for the management of postharvest boxwood blight or Volutella blight on boxwood cuttings. The harvested boxwood cuttings were inoculated with a conidial suspension of C. pseudonaviculata or P. foliicola, then dipped into treatment solution 3 days afterwards. The treated boxwood cuttings were kept in room conditions, and boxwood blight or Volutella blight disease severity as well as marketability (postharvest shelf life) assessed every 2 days for 1 week. A significant difference between treatments was observed for reduction of boxwood blight or Volutella blight severity and AUDPC. The treatments (ODD + DoD + DdD + DB)AC [Simple Green D Pro 5], 2 propanol + DDAC (0.12%) [KleenGrow], and DBAC + DEAC [GreenShield] were the most effective in reducing the plant to plant transfer of boxwood blight and Volutella blight when pruned with contaminated Felco 19 shears. In addition to the three effective treatments above, acetic acid (2.5%) [Vinegar], 2-propanol + DDAC (0.06%), sodium hypochlorite (Clorox) and potassium peroxymonosulfate + NaCl (2%) [Virkon] were effective in reducing postharvest boxwood blight whereas DBAC + DBAC [Lysol all-purpose cleaner], ethanol [70% (Ethyl alcohol)] and DDAC +DBAC [Simple Green D Pro 3 plus] were effective in reducing Volutella blight disease severity and AUDPC, and also maintained better quality and longer postharvest shelf life of boxwood cuttings when applied as a dip treatment. The longer postharvest shelf life of boxwood cuttings noted may be attributed to reduced disease severity and AUDPC resulting in healthy boxwood cuttings.


Sign in / Sign up

Export Citation Format

Share Document