Special hermitian forms for Seifert surfaces of boundary links and algebraic invariants

Knots 90 ◽  
2014 ◽  
Author(s):  
S. Fukuhara
Author(s):  
JOUNI PARKKONEN ◽  
FRÉDÉRIC PAULIN

Abstract We develop the relationship between quaternionic hyperbolic geometry and arithmetic counting or equidistribution applications, that arises from the action of arithmetic groups on quaternionic hyperbolic spaces, especially in dimension 2. We prove a Mertens counting formula for the rational points over a definite quaternion algebra A over ${\mathbb{Q}}$ in the light cone of quaternionic Hermitian forms, as well as a Neville equidistribution theorem of the set of rational points over A in quaternionic Heisenberg groups.


1996 ◽  
Vol 123 (1) ◽  
pp. 233-240 ◽  
Author(s):  
Eva Bayer-Fluckiger ◽  
Laura Fainsilber
Keyword(s):  

1988 ◽  
Vol 20 (1) ◽  
pp. 61-64 ◽  
Author(s):  
Martin Scharlemann ◽  
Abigail Thompson
Keyword(s):  

Author(s):  
Yumiko Hironaka

We introduce the space [Formula: see text] of quaternion Hermitian forms of size [Formula: see text] on a [Formula: see text]-adic field with odd residual characteristic, and define typical spherical functions [Formula: see text] on [Formula: see text] and give their induction formula on sizes by using local densities of quaternion Hermitian forms. Then, we give functional equation of spherical functions with respect to [Formula: see text], and define a spherical Fourier transform on the Schwartz space [Formula: see text] which is Hecke algebra [Formula: see text]-injective map into the symmetric Laurent polynomial ring of size [Formula: see text]. Then, we determine the explicit formulas of [Formula: see text] by a method of the author’s former result. In the last section, we give precise generators of [Formula: see text] and determine all the spherical functions for [Formula: see text], and give the Plancherel formula for [Formula: see text].


1981 ◽  
Vol 33 (5) ◽  
pp. 1205-1231 ◽  
Author(s):  
Lawrence A. Fialkow

Let and denote infinite dimensional Hilbert spaces and let denote the space of all bounded linear operators from to . For A in and B in , let τAB denote the operator on defined by τAB(X) = AX – XB. The purpose of this note is to characterize the semi-Fredholm domain of τAB (Corollary 3.16). Section 3 also contains formulas for ind(τAB – λ). These results depend in part on a decomposition theorem for Hilbert space operators corresponding to certain “singular points” of the semi-Fredholm domain (Theorem 2.2). Section 4 contains a particularly simple formula for ind(τAB – λ) (in terms of spectral and algebraic invariants of A and B) for the case when τAB – λ is Fredholm (Theorem 4.2). This result is used to prove that (τBA) = –ind(τAB) (Corollary 4.3). We also prove that when A and B are bi-quasi-triangular, then the semi-Fredholm domain of τAB contains no points corresponding to nonzero indices.


Sign in / Sign up

Export Citation Format

Share Document