Spherical functions and local densities on the space of p-adic quaternion Hermitian forms

Author(s):  
Yumiko Hironaka

We introduce the space [Formula: see text] of quaternion Hermitian forms of size [Formula: see text] on a [Formula: see text]-adic field with odd residual characteristic, and define typical spherical functions [Formula: see text] on [Formula: see text] and give their induction formula on sizes by using local densities of quaternion Hermitian forms. Then, we give functional equation of spherical functions with respect to [Formula: see text], and define a spherical Fourier transform on the Schwartz space [Formula: see text] which is Hecke algebra [Formula: see text]-injective map into the symmetric Laurent polynomial ring of size [Formula: see text]. Then, we determine the explicit formulas of [Formula: see text] by a method of the author’s former result. In the last section, we give precise generators of [Formula: see text] and determine all the spherical functions for [Formula: see text], and give the Plancherel formula for [Formula: see text].

2014 ◽  
Vol 10 (02) ◽  
pp. 513-558
Author(s):  
YUMIKO HIRONAKA ◽  
YASUSHI KOMORI

We investigate the space X of unitary hermitian matrices over 𝔭-adic fields through spherical functions. First we consider Cartan decomposition of X, and give precise representatives for fields with odd residual characteristic, i.e. 2 ∉ 𝔭. From Sec. 2.2 till the end of Sec. 4, we assume odd residual characteristic, and give explicit formulas of typical spherical functions on X, where Hall–Littlewood symmetric polynomials of type Cn appear as a main term, parametrization of all the spherical functions. By spherical Fourier transform, we show that the Schwartz space [Formula: see text] is a free Hecke algebra [Formula: see text]-module of rank 2n, where 2n is the size of matrices in X, and give the explicit Plancherel formula on [Formula: see text].


1987 ◽  
Vol 39 (1) ◽  
pp. 1-7
Author(s):  
Charles Asmuth

The purpose of this paper is to produce explicit realizations of supercuspidal representations of Sp4(k) where k is a p-adic field with odd residual characteristic. These representations will be constructed using the Weil representation of Sp4(k) associated with a certain 4-dimensional compact orthogonal group OQ over k. The main problem addressed in this paper is the analysis of this representation; we need to find how the supercuspidal summands decompose into irreducible pieces.The problem of decomposing Weil representations has been studied quite a bit already. The Weil representations of SL2(k) associated to 2-dimensional orthogonal groups were used by Casselman [4] and Shalika [9] to produce all supercuspidals of SL2(k). The explicit formulas for these representations were used by Sally and Shalika ([10]) to compute the characters and finally to write down a Plancherel formula for that group.


2018 ◽  
Vol 20 ◽  
pp. 01001
Author(s):  
Chang Gyu Whan

In this paper, we will survey recent results on weakly factorial domains base on the results of [11, 13, 14]. LetD be an integral domain, X be an indeterminate over D, d ∈ D, R = D[X,d/X] be a subring of the Laurent polynomial ring D[X,1/X], Γ be a nonzero torsionless commutative cancellative monoid with quotient group G, and D[Γ] be the semigroup ring of Γ over D. Among other things, we show that R is a weakly factorial domain if and only if D is a weakly factorial GCD‐domain and d = 0, d is a unit of D or d is a prime element of D. We also show that if char(D) = 0 (resp., char(D) = p > 0), then D[Γ] is a weakly factorial domain if and only if D is a weakly factorial GCD domain, Γ is a weakly factorial GCD semigroup, and G is of type (0,0,0,…) (resp., (0,0,0,…) except p).


2018 ◽  
Vol 27 (14) ◽  
pp. 1850076 ◽  
Author(s):  
Lorenzo Traldi

We extend the notion of link colorings with values in an Alexander quandle to link colorings with values in a module [Formula: see text] over the Laurent polynomial ring [Formula: see text]. If [Formula: see text] is a diagram of a link [Formula: see text] with [Formula: see text] components, then the colorings of [Formula: see text] with values in [Formula: see text] form a [Formula: see text]-module [Formula: see text]. Extending a result of Inoue [Knot quandles and infinite cyclic covering spaces, Kodai Math. J. 33 (2010) 116–122], we show that [Formula: see text] is isomorphic to the module of [Formula: see text]-linear maps from the Alexander module of [Formula: see text] to [Formula: see text]. In particular, suppose [Formula: see text] is a field and [Formula: see text] is a homomorphism of rings with unity. Then [Formula: see text] defines a [Formula: see text]-module structure on [Formula: see text], which we denote [Formula: see text]. We show that the dimension of [Formula: see text] as a vector space over [Formula: see text] is determined by the images under [Formula: see text] of the elementary ideals of [Formula: see text]. This result applies in the special case of Fox tricolorings, which correspond to [Formula: see text] and [Formula: see text]. Examples show that even in this special case, the higher Alexander polynomials do not suffice to determine [Formula: see text]; this observation corrects erroneous statements of Inoue [Quandle homomorphisms of knot quandles to Alexander quandles, J. Knot Theory Ramifications 10 (2001) 813–821; op. cit.].


2020 ◽  
Vol 29 (06) ◽  
pp. 2050036
Author(s):  
Sandy Ganzell ◽  
Mercedes V. Gonzalez ◽  
Chloe’ Marcum ◽  
Nina Ryalls ◽  
Mariel Santos

We study the effects of certain local moves on Homflyptand Kauffman polynomials. We show that all Homflypt(or Kauffman) polynomials are equal in a certain nontrivial quotient of the Laurent polynomial ring. As a consequence, we discover some new properties of these invariants.


2015 ◽  
Vol 14 (04) ◽  
pp. 1550055
Author(s):  
Thomas Hüttemann ◽  
David Quinn

Let C be a bounded cochain complex of finitely generated free modules over the Laurent polynomial ring L = R[x, x-1, y, y-1]. The complex C is called R-finitely dominated if it is homotopy equivalent over R to a bounded complex of finitely generated projective R-modules. Our main result characterizes R-finitely dominated complexes in terms of Novikov cohomology: C is R-finitely dominated if and only if eight complexes derived from C are acyclic; these complexes are C ⊗L R〚x, y〛[(xy)-1] and C ⊗L R[x, x-1]〚y〛[y-1], and their variants obtained by swapping x and y, and replacing either indeterminate by its inverse.


2012 ◽  
Vol 55 (1) ◽  
pp. 145-160 ◽  
Author(s):  
THOMAS HÜTTEMANN ◽  
DAVID QUINN

AbstractSuppose C is a bounded chain complex of finitely generated free modules over the Laurent polynomial ring L = R[x,x−1]. Then C is R-finitely dominated, i.e. homotopy equivalent over R to a bounded chain complex of finitely generated projective R-modules if and only if the two chain complexes C ⊗LR((x)) and C ⊗LR((x−1)) are acyclic, as has been proved by Ranicki (A. Ranicki, Finite domination and Novikov rings, Topology34(3) (1995), 619–632). Here R((x)) = R[[x]][x−1] and R((x−1)) = R[[x−1]][x] are rings of the formal Laurent series, also known as Novikov rings. In this paper, we prove a generalisation of this criterion which allows us to detect finite domination of bounded below chain complexes of projective modules over Laurent rings in several indeterminates.


Sign in / Sign up

Export Citation Format

Share Document