Factors Controlling Electron Flow in Liposomes Containing Complex III from Beef Heart

Author(s):  
B. D. Nelson ◽  
I. Mendel-Hartvig ◽  
F. Guerrieri ◽  
P. Gellerfors ◽  
M. Klingenberg ◽  
...  
Keyword(s):  
1981 ◽  
Vol 256 (21) ◽  
pp. 11132-11136 ◽  
Author(s):  
H. Gutweniger ◽  
R. Bisson ◽  
C. Montecucco

2000 ◽  
Vol 203 (5) ◽  
pp. 905-911 ◽  
Author(s):  
R.K. Suarez ◽  
J.F. Staples ◽  
J.R. Lighton ◽  
O. Mathieu-Costello

The biochemical bases for the high mass-specific metabolic rates of flying insects remain poorly understood. To gain insights into mitochondrial function during flight, metabolic rates of individual flying honeybees were measured using respirometry, and their thoracic muscles were fixed for electron microscopy. Mitochondrial volume densities and cristae surface densities, combined with biochemical data concerning cytochrome content per unit mass, were used to estimate respiratory chain enzyme densities per unit cristae surface area. Despite the high content of respiratory enzymes per unit muscle mass, these are accommodated by abundant mitochondria and high cristae surface densities such that enzyme densities per unit cristae surface area are similar to those found in mammalian muscle and liver. These results support the idea that a unit area of mitochondrial inner membrane constitutes an invariant structural unit. Rates of O(2) consumption per unit cristae surface area are much higher than those estimated in mammals as a consequence of higher enzyme turnover rates (electron transfer rates per enzyme molecule) during flight. Cytochrome c oxidase, in particular, operates close to its maximum catalytic capacity (k(cat)). Thus, high flux rates are achieved via (i) high respiratory enzyme content per unit muscle mass and (ii) the operation of these enzymes at high fractional velocities.


FEBS Letters ◽  
1975 ◽  
Vol 58 (1-2) ◽  
pp. 33-38 ◽  
Author(s):  
William J. Vail ◽  
R. K. Riley ◽  
John S. Rieske

Author(s):  
P. Gellerfors ◽  
M. Lunden ◽  
B. D. Nelson ◽  
M. Klingenberg ◽  
D. F. Wilson

1982 ◽  
Vol 204 (1) ◽  
pp. 37-47 ◽  
Author(s):  
A P Halestrap

1. Studies on the cytochrome spectra of liver mitochondria from control and glucagon-treated rats in State 4, State 3 and in the presence of uncoupler are reported. 2. The stimulation of electron flow between cytochromes c1 and c observed previously [Halestrap (1978) Biochem. J. 172, 399-405] was shown to be an artefact of Ca2+-induced swelling of mitochondria. 3. When precautions were taken to prevent such swelling, glucagon treatment was shown to enhance the reduction of cytochromes c, c1 and b558 in both State 3 and uncoupled conditions with either succinate or glutamate + malate as substrate. An increase in the reduction of cytochromes b562 and b566 was also seen in some, but not all, experiments. 4. In State 4 with succinate but not glutamate + malate as substrate, cytochromes c, c1, b558, b562 and b566 showed increased reduction. 5. Glucagon stimulated oxidation of duroquinol and palmitoylcarnitine by intact mitochondria and of NADH by disrupted mitochondria. 6. No effect of glucagon on succinate dehydrogenase activity or the temperature-dependence of succinate oxidation could be detected. 7. Glucagon enhanced the inhibition of the respiratory chain by colletotrichin, but not antimycin or 8-heptyl-4-hydroxyquinoline N-oxide. 8. These results are interpreted in terms of a primary stimulation by glucagon of the ‘Q cycle’ [Mitchell (1976) J. Theor. Biol. 62, 827-367] within Complex III (ubiquinol:cytochrome c oxidoreductase) and a secondary site of action involving stimulation of electron flow into Complex III from the ubiquinone pool. 9. Ageing of mitochondria, hyperosmotic treatment or addition of 20 mM-benzyl alcohol opposed the effects of glucagon treatment on cytochrome spectra and colletotrichin inhibition of respiration. 10. These results support the hypothesis that glucagon exerts its effects on the mitochondria by perturbing the membrane structure.


1985 ◽  
Vol 132 (3) ◽  
pp. 1166-1173 ◽  
Author(s):  
Hideto Nakahara ◽  
Yoshiharu Shimomura ◽  
Takayuki Ozawa

Sign in / Sign up

Export Citation Format

Share Document