Edges versus circuits: a hierarchy of diameters in polyhedra

2016 ◽  
Vol 16 (4) ◽  
Author(s):  
S. Borgwardt ◽  
J. A. De Loera ◽  
E. Finhold

AbstractThe study of the graph diameter of polytopes is a classical open problem in polyhedral geometry and the theory of linear optimization. In this paper we continue the investigation initiated in [

2013 ◽  
Vol 221 (3) ◽  
pp. 190-200 ◽  
Author(s):  
Jörg-Tobias Kuhn ◽  
Thomas Kiefer

Several techniques have been developed in recent years to generate optimal large-scale assessments (LSAs) of student achievement. These techniques often represent a blend of procedures from such diverse fields as experimental design, combinatorial optimization, particle physics, or neural networks. However, despite the theoretical advances in the field, there still exists a surprising scarcity of well-documented test designs in which all factors that have guided design decisions are explicitly and clearly communicated. This paper therefore has two goals. First, a brief summary of relevant key terms, as well as experimental designs and automated test assembly routines in LSA, is given. Second, conceptual and methodological steps in designing the assessment of the Austrian educational standards in mathematics are described in detail. The test design was generated using a two-step procedure, starting at the item block level and continuing at the item level. Initially, a partially balanced incomplete item block design was generated using simulated annealing, whereas in a second step, items were assigned to the item blocks using mixed-integer linear optimization in combination with a shadow-test approach.


2014 ◽  
Author(s):  
Joe W. Tidwell ◽  
Michael Dougherty ◽  
Rick P. Thomas ◽  
Jeffrey S. Chrabaszcz
Keyword(s):  

2013 ◽  
Vol 3 (2) ◽  
pp. 197-202
Author(s):  
Amir Pishkoo ◽  
Maslina Darus

This paper presents a mathematical model that provides analytic connection between four fundamental forces (interactions), by using modified reciprocal theorem,derived in the paper, as a convenient template. The essential premise of this work is to demonstrate that if we obtain with a form of the Yukawa potential function [as a meromorphic univalent function], we may eventually obtain the Coloumb Potential as a univalent function outside of the unit disk. Finally, we introduce the new problem statement about assigning Meijer's G-functions to Yukawa and Coloumb potentials as an open problem.


Author(s):  
Christodoulos A. Floudas

Filling a void in chemical engineering and optimization literature, this book presents the theory and methods for nonlinear and mixed-integer optimization, and their applications in the important area of process synthesis. Other topics include modeling issues in process synthesis, and optimization-based approaches in the synthesis of heat recovery systems, distillation-based systems, and reactor-based systems. The basics of convex analysis and nonlinear optimization are also covered and the elementary concepts of mixed-integer linear optimization are introduced. All chapters have several illustrations and geometrical interpretations of the material as well as suggested problems. Nonlinear and Mixed-Integer Optimization will prove to be an invaluable source--either as a textbook or a reference--for researchers and graduate students interested in continuous and discrete nonlinear optimization issues in engineering design, process synthesis, process operations, applied mathematics, operations research, industrial management, and systems engineering.


Author(s):  
Bin Liu ◽  
Jouni Rättyä ◽  
Fanglei Wu

AbstractBounded and compact differences of two composition operators acting from the weighted Bergman space $$A^p_\omega $$ A ω p to the Lebesgue space $$L^q_\nu $$ L ν q , where $$0<q<p<\infty $$ 0 < q < p < ∞ and $$\omega $$ ω belongs to the class "Equation missing" of radial weights satisfying two-sided doubling conditions, are characterized. On the way to the proofs a new description of q-Carleson measures for $$A^p_\omega $$ A ω p , with $$p>q$$ p > q and "Equation missing", involving pseudohyperbolic discs is established. This last-mentioned result generalizes the well-known characterization of q-Carleson measures for the classical weighted Bergman space $$A^p_\alpha $$ A α p with $$-1<\alpha <\infty $$ - 1 < α < ∞ to the setting of doubling weights. The case "Equation missing" is also briefly discussed and an open problem concerning this case is posed.


2020 ◽  
Vol 177 (2) ◽  
pp. 141-156
Author(s):  
Behrouz Kheirfam

In this paper, we propose a Mizuno-Todd-Ye type predictor-corrector infeasible interior-point method for linear optimization based on a wide neighborhood of the central path. According to Ai-Zhang’s original idea, we use two directions of distinct and orthogonal corresponding to the negative and positive parts of the right side vector of the centering equation of the central path. In the predictor stage, the step size along the corresponded infeasible directions to the negative part is chosen. In the corrector stage by modifying the positive directions system a full-Newton step is removed. We show that, in addition to the predictor step, our method reduces the duality gap in the corrector step and this can be a prominent feature of our method. We prove that the iteration complexity of the new algorithm is 𝒪(n log ɛ−1), which coincides with the best known complexity result for infeasible interior-point methods, where ɛ > 0 is the required precision. Due to the positive direction new system, we improve the theoretical complexity bound for this kind of infeasible interior-point method [1] by a factor of n . Numerical results are also provided to demonstrate the performance of the proposed algorithm.


Sign in / Sign up

Export Citation Format

Share Document