scholarly journals Locally homogeneous non-gradient quasi-Einstein 3-manifolds

2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Alice Lim

Abstract In this paper, we classify the compact locally homogeneous non-gradient m-quasi Einstein 3- manifolds. Along the way, we also prove that given a compact quotient of a Lie group of any dimension that is m-quasi Einstein, the potential vector field X must be left invariant and Killing. We also classify the nontrivial m-quasi Einstein metrics that are a compact quotient of the product of two Einstein metrics. We also show that S1 is the only compact manifold of any dimension which admits a metric which is nontrivially m-quasi Einstein and Einstein.

2017 ◽  
Vol 15 (1) ◽  
pp. 1236-1243 ◽  
Author(s):  
Yaning Wang

Abstract Let (M3, g) be an almost Kenmotsu 3-manifold such that the Reeb vector field is an eigenvector field of the Ricci operator. In this paper, we prove that if g represents a Ricci soliton whose potential vector field is orthogonal to the Reeb vector field, then M3 is locally isometric to either the hyperbolic space ℍ3(−1) or a non-unimodular Lie group equipped with a left invariant non-Kenmotsu almost Kenmotsu structure. In particular, when g represents a gradient Ricci soliton whose potential vector field is orthogonal to the Reeb vector field, then M3 is locally isometric to either ℍ3(−1) or ℍ2(−4) × ℝ.


Author(s):  
Wenjie Wang

AbstractIn this paper, we study $$\eta$$ η -Ricci solitons on almost cosymplectic $$(k,\mu )$$ ( k , μ ) -manifolds. As an application, it is proved that if an almost cosymplectic $$(k,\mu )$$ ( k , μ ) -metric with $$k<0$$ k < 0 represents a Ricci soliton, then the potential vector field of the Ricci soliton is a strict infinitesimal contact transformation, and the corresponding almost cosymplectic manifold is locally isometric to a Lie group whose local structure is determined completely by $$k<0$$ k < 0 . In addition, a concrete example is constructed to illustrate the above result.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Amalendu Ghosh

Abstract We prove that on a K-contact manifold, a Ricci almost soliton is a Ricci soliton if and only if the potential vector field V is a Jacobi field along the Reeb vector field ξ. Then we study contact metric as a Ricci almost soliton with parallel Ricci tensor. To this end, we consider Ricci almost solitons whose potential vector field is a contact vector field and prove some rigidity results.


Cubo (Temuco) ◽  
2018 ◽  
Vol 20 (3) ◽  
pp. 37-47
Author(s):  
Yadab ChandraMandal ◽  
Shyamal Kumar Hui

2019 ◽  
Vol 17 (1) ◽  
pp. 874-882 ◽  
Author(s):  
Xinxin Dai ◽  
Yan Zhao ◽  
Uday Chand De

Abstract Let (M, g) be a non-Kenmotsu (κ, μ)′-almost Kenmotsu manifold of dimension 2n + 1. In this paper, we prove that if the metric g of M is a *-Ricci soliton, then either M is locally isometric to the product ℍn+1(−4)×ℝn or the potential vector field is strict infinitesimal contact transformation. Moreover, two concrete examples of (κ, μ)′-almost Kenmotsu 3-manifolds admitting a Killing vector field and strict infinitesimal contact transformation are given.


2018 ◽  
Vol 62 (4) ◽  
pp. 912-922 ◽  
Author(s):  
Yaning Wang

AbstractIn this paper, we prove that if an almost co-Kähler manifold of dimension greater than three satisfying $\unicode[STIX]{x1D702}$-Einstein condition with constant coefficients is a Ricci soliton with potential vector field being of constant length, then either the manifold is Einstein or the Reeb vector field is parallel. Let $M$ be a non-co-Kähler almost co-Kähler 3-manifold such that the Reeb vector field $\unicode[STIX]{x1D709}$ is an eigenvector field of the Ricci operator. If $M$ is a Ricci soliton with transversal potential vector field, then it is locally isometric to Lie group $E(1,1)$ of rigid motions of the Minkowski 2-space.


Author(s):  
Xiaomin Chen ◽  
Uday Chand De

In this paper, we study almost coKähler manifolds admitting [Formula: see text]-almost Yamabe solitons [Formula: see text]. First, we obtain a classification of almost coKähler [Formula: see text]-manifolds admitting nontrivial closed [Formula: see text]-almost Yamabe solitons. Next, we consider an almost [Formula: see text]-coKähler manifold admitting a nontrivial [Formula: see text]-almost Yamabe soliton and prove that it is locally the Riemannian product of an almost Kähler manifold with the real line if the potential vector field [Formula: see text] is collinear with the Reeb vector field. For the potential vector field [Formula: see text] being orthogonal to the Reeb vector field, we also obtain two results.


2010 ◽  
Vol 07 (06) ◽  
pp. 951-960 ◽  
Author(s):  
JONG TAEK CHO ◽  
RAMESH SHARMA

We show that a compact contact Ricci soliton with a potential vector field V collinear with the Reeb vector field, is Einstein. We also show that a homogeneous H-contact gradient Ricci soliton is locally isometric to En+1 × Sn(4). Finally we obtain conditions so that the horizontal and tangential lifts of a vector field on the base manifold may be potential vector fields of a Ricci soliton on the unit tangent bundle.


Sign in / Sign up

Export Citation Format

Share Document