scholarly journals Dynamic Stress Concentration at the Boundary of an Incision at the Plate Under the Action of Weak Shock Waves

2017 ◽  
Vol 11 (3) ◽  
pp. 217-221 ◽  
Author(s):  
Olena Mikulich ◽  
Vasyl’ Shvabyuk ◽  
Heorhiy Sulym

AbstractThis paper proposes the novel technique for analysis of dynamic stress state of multi-connected infinite plates under the action of weak shock waves. For solution of the problem it uses the integral and discrete Fourier transforms. Calculation of transformed dynamic stresses at the incisions of plates is held using the boundary-integral equation method and the theory of complex variable functions. The numerical implementation of the developed algorithm is based on the method of mechanical quadratures and collocation technique. For calculation of originals of the dynamic stresses it uses modified discrete Fourier transform. The algorithm is effective in the analysis of the dynamic stress state of defective plates.

2015 ◽  
Vol 9 (3) ◽  
pp. 140-144 ◽  
Author(s):  
Vasyl’ Shvabyuk ◽  
Heorhiy Sulym ◽  
Olena Mikulich

Abstract This paper proposes the novel technique for analysis of dynamic stress state of multi-connected infinite plates under the action of oscillating forces. Calculation of dynamic stresses at the incisions of plates is held using the boundary-integral equation method and the theory of complex variable functions. The numerical implementation of the developed algorithmis based on the method of mechanical quadratures and collocation technique. The algorithm is effective in the analysis of the stress state caused by steady-state vibrations of plates.


2020 ◽  
Vol 22 (3) ◽  
pp. 739-750
Author(s):  
Heorhiy Sulym ◽  
Olena Mikulich ◽  
Vasyl’ Shvabyuk

AbstractThe paper presents studies on the application of the boundary integral equation method for investigation of dynamic stress state of foam media with tunnel cavities in Cosserat continuum. For the solution of the non-stationary problem, the Fourier transform for time variable was used. The potential representations of Fourier transform displacements and microrotations are written. The fundamental functions of displacements and microrotations for the two-dimensional case of Cosserat continuum are built. Thus, the fundamental functions of displacement for the time-domain problem are derived as the functions of the two-dimensional isotropic continuum and the functions, which are responsible for the effect of shear-rotation deformations. The method of mechanical quadrature is applied for numerical calculations. Numerical example shows the comparison of distribution of dynamic stresses in the foam medium with the cavity under the action of impulse load accounting for the shear-rotation deformations effect and without accounting for this effect.


Sign in / Sign up

Export Citation Format

Share Document