scholarly journals Application Of Artificial Neural Networks In Modeling Of Manufactured Front Metallization Contact Resistance For Silicon Solar Cells

2015 ◽  
Vol 60 (3) ◽  
pp. 1673-1678 ◽  
Author(s):  
M. Musztyfaga-Staszuk ◽  
R. Honysz

Abstract This paper presents the application of artificial neural networks for prediction contact resistance of front metallization for silicon solar cells. The influence of the obtained front electrode features on electrical properties of solar cells was estimated. The front electrode of photovoltaic cells was deposited using screen printing (SP) method and next to manufactured by two methods: convectional (1. co-fired in an infrared belt furnace) and unconventional (2. Selective Laser Sintering). Resistance of front electrodes solar cells was investigated using Transmission Line Model (TLM). Artificial neural networks were obtained with the use of Statistica Neural Network by Statsoft. Created artificial neural networks makes possible the easy modelling of contact resistance of manufactured front metallization and allows the better selection of production parameters. The following technological recommendations for the screen printing connected with co-firing and selective laser sintering technology such as optimal paste composition, morphology of the silicon substrate, co-firing temperature and the power and scanning speed of the laser beam to manufacture the front electrode of silicon solar cells were experimentally selected in order to obtain uniformly melted structure well adhered to substrate, of a small front electrode substrate joint resistance value. The prediction possibility of contact resistance of manufactured front metallization is valuable for manufacturers and constructors. It allows preserving the customers’ quality requirements and bringing also measurable financial advantages.

1980 ◽  
Vol 7 (1-3) ◽  
pp. 107-111 ◽  
Author(s):  
L. Frisson ◽  
Ph. Lauwers ◽  
R. Mertens ◽  
R. Van Overstraeten ◽  
R. Govaerts

This paper presents a screen printing process for the metallization of silicon solar cells. The physics and construction of a classical solar cell are reviewed. The results obtained with a screen printing process are comparable with other, more expensive technologies. This technology does not introduce an additional contact resistance on silicon. The process optimization and the influence of different parameters are discussed.


Author(s):  
Jatin Kumar Chaudhary ◽  
Jiaqing Liu ◽  
Jukka-Pekka Skön ◽  
Yen Wie Chen ◽  
Rajeev Kumar Kanth ◽  
...  

Circuit World ◽  
2016 ◽  
Vol 42 (2) ◽  
pp. 77-83 ◽  
Author(s):  
Jun Qin ◽  
Shuxin Bai ◽  
Weijun Zhang ◽  
Zhuofeng Liu ◽  
Hailiang Wang

Purpose The purpose of this paper is to characterize and understand the effects of polymer binder, thixotropic agent, solvent and organic medium content on the rheological properties of silver pastes for screen printing front electrode films of solar cells. Design/methodology/approach Dispersions of silver particles (surface modified with oleic acid) in ethyl cellulose (EC) polymer solutions with and without thixotropic agent were prepared, and yield stress values were measured by setting shear stress to characterize the inter-particle interaction strength of pastes. Steady-state flow, three interval thixotropy shear test and oscillatory measurements were conducted to study the effect of EC polymer and thixotropic agent on viscosity, structure rebuilding and viscoelastic properties of electrode pastes. The effect of solvent was studied by investigating the steady viscosity of cellulose acetate butyrate (CAB) polymer solutions and Ag dispersions. Findings Weak flocculation network of silver particles was produced because of depletion flocculation. Besides the interaction between thixotropic agent micelles, EC polymer also has a significant interaction with thixotropic agent. Merely increasing EC polymer or thixotropic agent content is not the best way to prevent the layer printed from laying down. The effect of solvent on the viscosity of paste is mainly attributed to the difference of hydromechanics radius and configuration of CAB polymer in solvents. With the increase of organic medium content, the properties of electrode pastes were converted from rigidity to flexibility. Originality/value It is still a challenge to obtain high-quality front electrode films for crystalline silicon solar cells by screen printing, because of the difficulty in reducing shadowing losses while ensuring a low series resistance and high filling factor. The paste rheological properties are the key properties related to the paste’s passing ability through the meshes and resistance of paste spreading on the substrate. Organic medium as an important component of the paste is acknowledged to be used to tailor the paste’s rheological properties and have a great role in screen printing.


Sign in / Sign up

Export Citation Format

Share Document