scholarly journals Screen Printed Metallization of Silicon Solar Cells

1980 ◽  
Vol 7 (1-3) ◽  
pp. 107-111 ◽  
Author(s):  
L. Frisson ◽  
Ph. Lauwers ◽  
R. Mertens ◽  
R. Van Overstraeten ◽  
R. Govaerts

This paper presents a screen printing process for the metallization of silicon solar cells. The physics and construction of a classical solar cell are reviewed. The results obtained with a screen printing process are comparable with other, more expensive technologies. This technology does not introduce an additional contact resistance on silicon. The process optimization and the influence of different parameters are discussed.

Circuit World ◽  
2014 ◽  
Vol 40 (1) ◽  
pp. 23-26 ◽  
Author(s):  
Kazimierz Drabczyk ◽  
Piotr Panek

Purpose – The paper aims to present results of investigations carried out on the front electrode of the solar cell. The front-side electrode for solar cells based on crystalline material is obtained by the screen printing method. Screen printing has been the prevailing method of electrode deposition because of its low cost. One of the ways to improve the cell efficiency and reduce the production costs is a further refinement of the metal electrode screen printing process. Design/methodology/approach – The researches were focused on the modification of mechanical parameters of screen printing process to ensure the best possible cross-section of the front electrode geometry. The main printing process parameters were constant, however, the print speed was variable. The obtained fine line of front contact was characterized morphologically – the dimension and geometry of the front contact cross-section – by scanning electron microscopy technique. Findings – The thin paths of 100 μm in width were screen printed applying a new silver-paste made by Du Pont. The printing speed has significant effect on print quality in the way that the lower speed enhanced the printed results. Research limitations/implications – For newest pastes (e.g. PV17D) influence of screen printing parameters on the front metallic electrodes geometry of solar cell is not so significant. Presented screen printing process can still give good results, but the further optimization for the new paste must be performed to achieve better cross-section geometry. Originality/value – This paper confirms that one-step screen printing process can still give good results. The screen printed thin paths of 100 μm in width have good cross-section aspect ratio.


2019 ◽  
Vol 958 ◽  
pp. 1-4
Author(s):  
Ricardo de Freitas Cabral ◽  
Marcelo Henrique Prado da Silva ◽  
Eduardo de Sousa Lima

In this paper are presented both the fill factor of 0.75 and an efficiency approaching 14.64 % of solar cell, which were achieved, despite the non-optimized process. A new Cu-based additive of pastes were applied for formation of front contact on silicon solar cells. Front contact were screen-printed using commercial silver paste containing the CuXX additive prepared at laboratory. It is the world's first copper based paste appropriate for high-temperature production processes of front contact of the solar cell.


2016 ◽  
Vol 33 (3) ◽  
pp. 172-175 ◽  
Author(s):  
Kazimierz Drabczyk ◽  
Jaroslaw Domaradzki ◽  
Grazyna Kulesza-Matlak ◽  
Marek Lipinski ◽  
Danuta Kaczmarek

Purpose The purpose of this paper was investigation and comparison of electrical and optical properties of crystalline silicon solar cells with ITO or TiO2 coating. The ITO, similar to TiO2, is very well transparent in the visible part of optical radiation; however, its low resistivity (lower that 10-3 Ohm/cm) makes it possible to use simultaneously as a transparent electrode for collection of photo-generated electrical charge carriers. This might also invoke increasing the distance between screen-printed metal fingers at the front of the solar cell that would increase of the cell’s active area. Performed optical investigation showed that applied ITO thin film fulfill standard requirements according to antireflection properties when it was deposited on the surface of silicon solar cell. Design/methodology/approach Two sets of samples were prepared for comparison. In the first one, the ITO thin film was deposited directly on the crystalline silicon substrate with highly doped emitter region. In the second case, the TCO film was deposited on the same type of silicon substrate but with additional ultrathin SiO2 passivation. The fingers lines of 80 μm width were then screen-printed on the ITO layer with two different spaces between fingers for each set. The influence of application of the ITO electrode and the type of metal electrodes patterns on the electrical performance of the prepared solar cells was investigated through optical and electrical measurements. Findings The electrical parameters such as short-circuit current (Jsc), open circuit voltage (Voc), fill factor (FF) and conversion efficiency were determined on a basis of I-V characteristics. Short-circuit current density (Jsc) was equal to 32 mA/cm2 for a solar cell with a typical antireflection layer and 31.5 mA/cm2 for the cell with ITO layer, respectively. Additionally, electroluminescence of prepared cells was measured and analysed. Originality/value The influence of the properties of ITO electrode on the electrical performance of crystalline silicon solar cells was investigated through complex optical, electrical and electroluminescence measurements.


2019 ◽  
Vol 293 ◽  
pp. 65-72
Author(s):  
Małgorzata Musztyfaga-Staszuk

In this paper are presented both the fill factor of 0.75 and an efficiency approaching 14.64 % of solar cell, which were achieved, despite the non-optimized process. A new Cu-based additive of pastes were applied for formation of front contact on silicon solar cells. Front contact were screen-printed using commercial silver paste containing the CuXX additive prepared at laboratory. It is the world's first copper based paste appropriate for high-temperature production processes of front contact of the solar cell.


2015 ◽  
Vol 60 (3) ◽  
pp. 1673-1678 ◽  
Author(s):  
M. Musztyfaga-Staszuk ◽  
R. Honysz

Abstract This paper presents the application of artificial neural networks for prediction contact resistance of front metallization for silicon solar cells. The influence of the obtained front electrode features on electrical properties of solar cells was estimated. The front electrode of photovoltaic cells was deposited using screen printing (SP) method and next to manufactured by two methods: convectional (1. co-fired in an infrared belt furnace) and unconventional (2. Selective Laser Sintering). Resistance of front electrodes solar cells was investigated using Transmission Line Model (TLM). Artificial neural networks were obtained with the use of Statistica Neural Network by Statsoft. Created artificial neural networks makes possible the easy modelling of contact resistance of manufactured front metallization and allows the better selection of production parameters. The following technological recommendations for the screen printing connected with co-firing and selective laser sintering technology such as optimal paste composition, morphology of the silicon substrate, co-firing temperature and the power and scanning speed of the laser beam to manufacture the front electrode of silicon solar cells were experimentally selected in order to obtain uniformly melted structure well adhered to substrate, of a small front electrode substrate joint resistance value. The prediction possibility of contact resistance of manufactured front metallization is valuable for manufacturers and constructors. It allows preserving the customers’ quality requirements and bringing also measurable financial advantages.


2021 ◽  
Author(s):  
Saba Siraj ◽  
Sofia Akbar Tahir ◽  
Adnan Ali

Abstract The aim of this research work was to assess the impact of front and rear grid metallization pattern on the performance of silicon solar cells. We have investigated the effect of front grid metallization design and geometry on the open-circuit voltage (Voc), short circuit current density (Jsc), fill factor (FF) and efficiency (ŋ) of silicon solar cells by using Griddler 2.5 simulation program. We used different number of metal fingers ranging from 80–120 having width of 60 µm and different number of busbars ranging from 1–5 busbars on the front and rear side of solar cells for optimization. We have also calculated the efficiency and fill factor at different values of front contact resistance ranging from (0.1–100) mohm-cm2, front and rare layer sheet resistances ranging from (60–110) ohm/sq and different edge gaps. We found that the maximum efficiency and fill factor was obtained with those parameters, when front and rare contact resistances were taken as same. We have designed an optimized silicon solar cell with 115 number of fingers, 4 busbars, front and rare contact resistance of 0.1 mohm-cm2 and front and rare layer sheet resistance of 60 ohm/sq. In this way we were able to successfully optimize the silicon solar cell having efficiency and fill factor of 19.49 % and 81.36 % respectively, for our best optimized silicon solar cell.


Sign in / Sign up

Export Citation Format

Share Document