Fractional elliptic equations with critical exponential nonlinearity

2016 ◽  
Vol 5 (1) ◽  
pp. 57-74 ◽  
Author(s):  
Jacques Giacomoni ◽  
Pawan Kumar Mishra ◽  
K. Sreenadh

AbstractWe study the existence of positive solutions for fractional elliptic equations of the type (-Δ)1/2u = h(u), u > 0 in (-1,1), u = 0 in ℝ∖(-1,1) where h is a real valued function that behaves like eu2 as u → ∞ . Here (-Δ)1/2 is the fractional Laplacian operator. We show the existence of mountain-pass solution when the nonlinearity is superlinear near t = 0. In case h is concave near t = 0, we show the existence of multiple solutions for suitable range of λ by analyzing the fibering maps and the corresponding Nehari manifold.

2017 ◽  
Vol 19 (06) ◽  
pp. 1750018 ◽  
Author(s):  
Tingzhi Cheng ◽  
Genggeng Huang ◽  
Congming Li

This paper is devoted to investigate the symmetry and monotonicity properties for positive solutions of fractional Laplacian equations. Especially, we consider the following fractional Laplacian equation with homogeneous Dirichlet condition: [Formula: see text] Here [Formula: see text] is a domain (bounded or unbounded) in [Formula: see text] which is convex in [Formula: see text]-direction. [Formula: see text] is the nonlocal fractional Laplacian operator which is defined as [Formula: see text] Under various conditions on [Formula: see text] and on a solution [Formula: see text] it is shown that [Formula: see text] is strictly increasing in [Formula: see text] in the left half of [Formula: see text], or in [Formula: see text]. Symmetry (in [Formula: see text]) of some solutions is proved.


2018 ◽  
Vol 22 (01) ◽  
pp. 1850078 ◽  
Author(s):  
Vincenzo Ambrosio

We deal with the multiplicity and concentration of positive solutions for the following fractional Schrödinger–Poisson-type system with critical growth: [Formula: see text] where [Formula: see text] is a small parameter, [Formula: see text], [Formula: see text], [Formula: see text], with [Formula: see text], is the fractional Laplacian operator, [Formula: see text] is a continuous positive potential and [Formula: see text] is a superlinear continuous function with subcritical growth. Using penalization techniques and Ljusternik–Schnirelmann theory, we investigate the relation between the number of positive solutions with the topology of the set where the potential attains its minimum value.


1994 ◽  
Vol 124 (6) ◽  
pp. 1177-1191 ◽  
Author(s):  
Dao-Min Cao ◽  
Gong-Bao Li ◽  
Huan-Song Zhou

We consider the following problem:where is continuous on RN and h(x)≢0. By using Ekeland's variational principle and the Mountain Pass Theorem without (PS) conditions, through a careful inspection of the energy balance for the approximated solutions, we show that the probelm (*) has at least two solutions for some λ* > 0 and λ ∈ (0, λ*). In particular, if p = 2, in a different way we prove that problem (*) with λ ≡ 1 and h(x) ≧ 0 has at least two positive solutions as


2006 ◽  
Vol 11 (4) ◽  
pp. 323-329 ◽  
Author(s):  
G. A. Afrouzi ◽  
S. H. Rasouli

This study concerns the existence of positive solutions to classes of boundary value problems of the form−∆u = g(x,u), x ∈ Ω,u(x) = 0, x ∈ ∂Ω,where ∆ denote the Laplacian operator, Ω is a smooth bounded domain in RN (N ≥ 2) with ∂Ω of class C2, and connected, and g(x, 0) < 0 for some x ∈ Ω (semipositone problems). By using the method of sub-super solutions we prove the existence of positive solution to special types of g(x,u).


Mathematics ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 320 ◽  
Author(s):  
Chenkuan Li ◽  
Changpin Li ◽  
Thomas Humphries ◽  
Hunter Plowman

The fractional Laplacian, also known as the Riesz fractional derivative operator, describes an unusual diffusion process due to random displacements executed by jumpers that are able to walk to neighbouring or nearby sites, as well as perform excursions to remote sites by way of Lévy flights. The fractional Laplacian has many applications in the boundary behaviours of solutions to differential equations. The goal of this paper is to investigate the half-order Laplacian operator ( − Δ ) 1 2 in the distributional sense, based on the generalized convolution and Temple’s delta sequence. Several interesting examples related to the fractional Laplacian operator of order 1 / 2 are presented with applications to differential equations, some of which cannot be obtained in the classical sense by the standard definition of the fractional Laplacian via Fourier transform.


Sign in / Sign up

Export Citation Format

Share Document