An Asymptotical Stability in Variational Sense for Second Order Systems

2010 ◽  
Vol 10 (1) ◽  
Author(s):  
Dariusz Idczak ◽  
Stanisław Walczak

AbstractIn this paper, a new, variational concept of asymptotical stability of zero solution to an ordinary differential system of the second order, considered in Sobolev space, is presented. Sufficient conditions for an asymptotical stability in a variational sense with respect to initial condition and functional parameter (control) are given. Relation to the classical asymptotical stability is illustrated.

1995 ◽  
Vol 117 (B) ◽  
pp. 145-153 ◽  
Author(s):  
D. S. Bernstein ◽  
S. P. Bhat

Necessary and sufficient conditions for Lyapunov stability, semistability and asymptotic stability of matrix second-order systems are given in terms of the coefficient matrices. Necessary and sufficient conditions for Lyapunov stability and instability in the absence of viscous damping are also given. These are used to derive several known stability and instability criteria as well as a few new ones. In addition, examples are given to illustrate the stability conditions.


Mathematics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 390
Author(s):  
Andrey Zahariev ◽  
Hristo Kiskinov

In this article existence and uniqueness of the solutions of the initial problem for neutral nonlinear differential system with incommensurate order fractional derivatives in Caputo sense and with piecewise continuous initial function is proved. A formula for integral presentation of the general solution of a linear autonomous neutral system with several delays is established and used for the study of the stability properties of a neutral autonomous nonlinear perturbed linear fractional differential system. Natural sufficient conditions are found to ensure that from global asymptotic stability of the zero solution of the linear part of a nonlinearly perturbed system it follows global asymptotic stability of the zero solution of the whole nonlinearly perturbed system.


1998 ◽  
Vol 11 (2) ◽  
pp. 209-216 ◽  
Author(s):  
D. D. Bainov ◽  
I. M. Stamova ◽  
A. S. Vatsala

The present work is devoted to the study of stability of the zero solution to linear impulsive differential-difference equations with variable impulsive perturbations. With the aid of piecewise continuous auxiliary functions, which are generalizations of the classical Lyapunov's functions, sufficient conditions are found for the uniform stability and uniform asymptotical stability of the zero solution to equations under consideration.


2015 ◽  
Vol 84 ◽  
pp. 1-6 ◽  
Author(s):  
Marco M. Nicotra ◽  
Roberto Naldi ◽  
Emanuele Garone

2012 ◽  
Vol 17 (5) ◽  
pp. 715-731
Author(s):  
Luis Barreira ◽  
Jaume Llibre ◽  
Claudia Valls

Lyapunov, Weinstein and Moser obtained remarkable theorems giving sufficient conditions for the existence of periodic orbits emanating from an equilibrium point of a differential system with a first integral. Using averaging theory of first order we established in [1] a similar result for a differential system without assuming the existence of a first integral. Now, using averaging theory of the second order, we extend our result to the case when the first order average is identically zero. Our result can be interpreted as a kind of degenerated Hopf bifurcation.


2005 ◽  
Vol 128 (3) ◽  
pp. 408-410 ◽  
Author(s):  
M. Tadi

This note considers the stability of linear time varying second order systems. It studies the case where the stiffness matrix is a function of time. It provides sufficient conditions for stability and asymptotic stability of the system provided that certain conditions on the stiffness matrix are satisfied.


1996 ◽  
Vol 3 (6) ◽  
pp. 571-582
Author(s):  
N. Partsvania

Abstract Sufficient conditions are found for the oscillation of proper solutions of the system of differential equations where fi : R + × R 2m → R (i = 1, 2) satisfy the local Carathéodory conditions and σi , τi : R + → R (i = 1, . . . , m) are continuous functions such that σi (t) ≤ t for t ∈ R +, .


1995 ◽  
Vol 117 (B) ◽  
pp. 145-153 ◽  
Author(s):  
D. S. Bernstein ◽  
S. P. Bhat

Necessary and sufficient conditions for Lyapunov stability, semistability and asymptotic stability of matrix second-order systems are given in terms of the coefficient matrices. Necessary and sufficient conditions for Lyapunov stability and instability in the absence of viscous damping are also given. These are used to derive several known stability and instability criteria as well as a few new ones. In addition, examples are given to illustrate the stability conditions.


Sign in / Sign up

Export Citation Format

Share Document