scholarly journals Optimal control of timed event graphs with resource sharing and output-reference update

2020 ◽  
Vol 68 (7) ◽  
pp. 512-528
Author(s):  
Germano Schafaschek ◽  
Laurent Hardouin ◽  
Jörg Raisch

AbstractTimed event graphs (TEGs) are a subclass of timed Petri nets that model synchronization and delay phenomena, but not conflict or choice. We consider a scenario where a number of TEGs share one or several resources and are subject to changes in their output-reference signals. Because of resource sharing, the resulting overall discrete event system is not a TEG. We propose a formal method to determine the optimal control input for such systems, where optimality is in the sense of the widely adopted just-in-time criterion. Our approach is based on a prespecified priority policy for the TEG components of the overall system. It builds on existing control theory for TEGs, which exploits the fact that, in a suitable mathematical framework (idempotent semirings such as the max-plus or the min-plus algebra), the temporal evolution of TEGs can be described by a set of linear time-invariant equations.

Author(s):  
Arindam Chakraborty ◽  
Jayati Dey

The guaranteed simultaneous stabilization of two linear time-invariant plants is achieved by continuous-time periodic controller with high controller frequency. Simultaneous stabilization is accomplished by means of pole-placement along with robust zero error tracking to either of two plants. The present work also proposes an efficient design methodology for the same. The periodic controller designed and synthesized for realizable bounded control input with the proposed methodology is always possible to implement with guaranteed simultaneous stabilization for two plants. Simulation and experimental results establish the veracity of the claim.


Author(s):  
Molong Duan ◽  
Chinedum Okwudire

This paper proposes a method for near energy optimal allocation of control effort in dual-input over-actuated systems using a linear time-invariant (LTI) controller. The method assumes a quadratic energy cost functional, and the non-causal energy optimal control ratio within the redundant actuation space is defined. Near energy optimal control allocation is addressed by using a LTI controller to align the control inputs with a causal approximation of the energy optimal control ratio. The use of a LTI controller for control allocation leads to low computation burden compared to techniques in the literature which require optimization at each time step. Moreover, the proposed method achieves broadband, near optimal control allocation, as opposed to traditional allocation methods which make use of a static system model for control allocation. The proposed method is validated through simulations and experiments on an over-actuated hybrid feed drive system. Significant improvements in energy efficiency without sacrificing positioning performance are demonstrated.


2007 ◽  
Vol 6 (1) ◽  
pp. 1
Author(s):  
T. BAKHTIAR

This paper studies the regulation performance limi- tation of delay-time systems. The performance is measured by the energy of the control input with respect to an impulse dis- turbance function. We first provide the analytical closed-form expression of the optimal performance for minimum phase case by reviewing the existing result. We then extend the problem to non-minimum phase case by exploiting the results of linear time- invariant discrete-time and delta domain cases.


Sign in / Sign up

Export Citation Format

Share Document