scholarly journals On The Information-Theoretical Entropy for Some Quantum Oscillators

2013 ◽  
Vol 57 (1) ◽  
pp. 67-79
Author(s):  
Dušan Popov ◽  
Nicolina Pop ◽  
Simona Șimon

Abstract The information-theoretical entropy, also called the “classical” entropy, was introduced by Wehrl in terms of the Glauber coherent states (CSs) | z > , i.e. the CSs corresponding to the one-dimensional harmonic oscillator (HO-1D). In the present paper, we have focused our attention on the examination of the information-theoretical entropy, i.e. the Wehrl entropy, for both the pure and the mixed (thermal) states of some quantum oscillators.

1995 ◽  
Vol 10 (12) ◽  
pp. 985-989 ◽  
Author(s):  
J. GRUNDBERG ◽  
T.H. HANSSON

We derive an su (1, 1) coherent state path integral formula for a system of two one-dimensional anyons in a harmonic potential. By a change of variables we transform this integral into a coherent states path integral for a harmonic oscillator with a shifted energy. The shift is the same as the one obtained for anyons by other methods. We justify the procedure by showing that the change of variables corresponds to an su (1, 1) version of the Holstein-Primakoff transformation.


2005 ◽  
Vol 19 (28) ◽  
pp. 4219-4227 ◽  
Author(s):  
SHI-HAI DONG ◽  
M. LOZADA-CASSOU

We present exact solutions of the one-dimensional Schrödinger equation with a harmonic oscillator plus an inverse square potential. The ladder operators are constructed by the factorization method. We find that these operators satisfy the commutation relations of the generators of the dynamical group SU(1, 1). Based on those ladder operators, we obtain the analytical expressions of matrix elements for some related functions ρ and [Formula: see text] with ρ=x2. Finally, we make some comments on the Barut–Girardello coherent states and the hidden symmetry between E(x) and E(ix) by substituting x→ix.


2011 ◽  
Vol 110-116 ◽  
pp. 3750-3754
Author(s):  
Jun Lu ◽  
Xue Mei Wang ◽  
Ping Wu

Within the framework of the quantum phase space representation established by Torres-Vega and Frederick, we solve the rigorous solutions of the stationary Schrödinger equations for the one-dimensional harmonic oscillator by means of the quantum wave-mechanics method. The result shows that the wave mechanics and the matrix mechanics are equivalent in phase space, just as in position or momentum space.


2018 ◽  
Vol 33 (26) ◽  
pp. 1850150 ◽  
Author(s):  
Won Sang Chung ◽  
Hassan Hassanabadi

Based on the one-dimensional quantum mechanics on (anti)-de Sitter background [W. S. Chung and H. Hassanabadi, Mod. Phys. Lett. A 32, 26 (2107)], we discuss the Ramsauer–Townsend effect. We also formulate the WKB method for the quantum mechanics on (anti)-de Sitter background to discuss the energy level of the quantum harmonic oscillator and quantum bouncer.


2011 ◽  
Vol 08 (06) ◽  
pp. 1259-1268 ◽  
Author(s):  
CIPRIAN HEDREA ◽  
ROMEO NEGREA ◽  
IOAN ZAHARIE ◽  
MIRCEA PUTA

The problem of geometric Kostant quantization of this paper is the role played by "½-correction forms" in order to arrive at the result given by the classical Schrödinger quantization, in the one-dimensional harmonic oscillator study.


Sign in / Sign up

Export Citation Format

Share Document