Platelets promote coagulation factor XII-mediated proteolytic cascade systems in plasma

2006 ◽  
Vol 387 (2) ◽  
pp. 173-178 ◽  
Author(s):  
Julia Johne ◽  
Constanze Blume ◽  
Peter M. Benz ◽  
Miroslava Pozgajová ◽  
Melanie Ullrich ◽  
...  

AbstractBlood coagulation factor XII (FXII, Hageman factor) is a plasma serine protease which is autoactivated following contact with negatively charged surfaces in a reaction involving plasma kallikrein and high-molecular-weight kininogen (contact phase activation). Active FXII has the ability to initiate blood clotting via the intrinsic pathway of coagulation and inflammatory reactions via the kallikrein-kinin system. Here we have determined FXII-mediated bradykinin formation and clotting in plasma. Western blotting analysis with specific antibodies against various parts of the contact factors revealed that limited activation of FXII is sufficient to promote plasma kallikrein activation, resulting in the conversion of high-molecular-weight kininogen and bradykinin generation. The presence of platelets significantly promoted FXII-initiated bradykinin formation. Similarly,in vitroclotting assays revealed that platelets critically promoted FXII-driven thrombin and fibrin formation. In summary, our data suggest that FXII-initiated protease cascades may proceed on platelet surfaces, with implications for inflammation and clotting.

1984 ◽  
Vol 52 (03) ◽  
pp. 221-223 ◽  
Author(s):  
M Christe ◽  
P Gattlen ◽  
J Fritschi ◽  
B Lämmle ◽  
W Berger ◽  
...  

SummaryThe contact phase has been studied in diabetics and patients with macroangiopathy. Factor XII and high molecular weight kininogen (HMWK) are normal. C1-inhibitor and also α2-macroglobulin are significantly elevated in diabetics with complications, for α1-macroglobulin especially in patients with nephropathy, 137.5% ± 36.0 (p <0.001). C1-inhibitor is also increased in vasculopathy without diabetes 113.2 ± 22.1 (p <0.01).Prekallikrein (PK) is increased in all patients’ groups (Table 2) as compared to normals. PK is particularly high (134% ± 32) in 5 diabetics without macroangiopathy but with sensomotor neuropathy. This difference is remarkable because of the older age of diabetics and the negative correlation of PK with age in normals.


2000 ◽  
Vol 83 (05) ◽  
pp. 709-714 ◽  
Author(s):  
T. Mauron ◽  
B. Lämmle ◽  
W. A. Wuillemin

SummaryWe investigated the cleavage of high molecular weight kininogen (HK) by activated coagulation factor XI (FXIa) in vitro. Incubation of HK with FXIa resulted in the generation of cleavage products which were subjected to SDS-Page and analyzed by silverstaining, ligandblotting and immunoblotting, respectively. Upon incubation with FXIa, bands were generated at 111, 100, 88 kDa on nonreduced and at 76, 62 and 51 kDa on reduced gels. Amino acid sequence analysis of the reaction mixtures revealed three cleavage sites at Arg409-Arg410, at Lys502-Thr503 and at Lys325-Lys326. Analysis of HK-samples incubated with FXIa for 3 min, 10 min and 120 min indicated HK to be cleaved first at Arg409-Arg410, followed by cleavage at Lys502-Thr503 and then at Lys325-Lys326.In conclusion, HK is cleaved by FXIa at three sites. Cleavage of HK by FXIa results in the loss of the surface binding site of HK, which may constitute a mechanism of inactivation of HK and of control of contact system activation.


Author(s):  
Da Young Song ◽  
Ja-Yoon Gu ◽  
Hyun Ju Yoo ◽  
Young Il Kim ◽  
Il Sung Nam-Goong ◽  
...  

Abstract Background In diabetic retinopathy (DR), neutrophil extracellular traps (NET) and kallikrein-kinin system are considered as contributing factors. However, the detail activation mechanisms has not been fully understood. Since the NET could provide negative-charged surface for factor XII activation and the activated factor XII (XIIa) can initiate kallikrein-kinin system, this study investigated whether patients with DR show activation of NET, factor XII and kallikrein-kinin system. Methods The markers related to NET (DNA-histone complex) and kallikrein-kinin system (high-molecular-weight kininogen, prekallikrein, bradykinin) and factor XIIa were measured in 253 patients with diabetes. To access ex vivo effect of glucose, DNA-histone complex and factor XIIa were measured in whole blood stimulated by glucose. Results The circulating level of DNA-histone complex and factor XIIa were significantly higher in patients with DR than those without DR. In logistic regression analysis, DNA-histone complex, factor XIIa, and high-molecular-weight kininogen were the risk factors of DR. In recursive partitioning analysis, among patients with diabetes duration less than 10 years, patients with high level of DNA-histone complex (>426 AU) showed high risk of DR. In ex vivo experiment, glucose significantly elevated both DNA-histone complex and factor XIIa. Conclusion Our findings suggest that activation of factor XII and kallikrein-kinin system combined with NET formation actively occur in patients with DR and circulating levels of DNA-histone complex, factor XIIa and HMWK can be potential biomarkers to estimate the risk of DR. Strategies against factor XII activation may be beneficial to inhibit DR.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3200-3200
Author(s):  
Anke Adenaeuer ◽  
Stefano Barco ◽  
Alice Trinchero ◽  
Hanan Nazir ◽  
Sarah Krutmann ◽  
...  

Abstract Background: Severe high molecular weight kininogen (HK) deficiency is an autosomal recessive defect of the contact system caused by mutations in KNG1. Limited scientific interest in HK deficiency due to the rarity of the seemingly asymptomatic condition may increase, as HK, the precursor of bradykinin, is now discussed as a therapeutic target e.g. in hereditary angioedema. Aims: We provide a comprehensive analysis of the diagnostic, clinical, and genetic features of HK deficiency and estimate its frequency. Methods: We identified a new case of HK deficiency, systematically review the literature, conduct new genetic studies of reported cases, and comprehensively analyze the clinical course and diagnostic criteria. Clotting activity of HK and prekallikrein (PK) (HK:C/PK:C) and antigen (HK:Ag/PK:Ag) were determined and genetic analyses of KNG1 and KLKB1 were performed by Sanger sequencing. Characteristics deduced from the known HK deficiency-causing variants were used to estimate the frequency of HK deficiency from the KNG1 variants aggregated in GnomAD. Results: 677 studies were identified by systematic review of the literature for HK deficiency. 27 of these contained individual cases of HK deficiency including 6 studies not listed in PubMed. Little-noticed cases from the gray literature account for more than one-third (16/39) of the extracted, unrelated cases. We genotyped one newly diagnosed HK-deficient case and 2 cases described in the literature and additionally evaluated all 10 studies reporting genetic data in HK-deficiency (including one case previously misdiagnosed as having PK deficiency). A total of 10 KNG1 variants causing HK deficiency (one new) were found, the most frequent being c.586C&gt;T, p.Arg196* (4 unrelated families). Interestingly, all HK deficiency-causing variants are truncating, whereas two amino acid substitutions with presumed functional consequence, have been described as the cause of hereditary angioedema. Conservative prevalence estimates based on all known and putative HK deficiency-causing variants extracted from GnomAD (truncating variants in KNG1, including indels, nonsense and canonical splice site mutations located in that part of the gene, where relevant mutations have been described) revealed a frequency of 1 case of HK deficiency among 7,925,172 with slight differences in the analyzed ethnicities (see table). In addition, although not to the same extent as seen in PK deficiency, HK deficiency apparently is more prevalent in Africans. While it is already well known that HK deficiency causes decreased PK levels, our data indicate that factor XI levels are also frequently decreased, albeit to a lesser extent. The number of cases detected so far is too low for a more detailed analysis regarding bleeding, thrombotic, and cardiovascular events or immunological abnormalities. Conclusion: HK-deficiency is probably more frequent than previously thought. Suspected cases of contact phase defects should at least be analyzed for HK activity (besides factor XII, XI and PK activity) to facilitate conclusive evaluation of the clinical significance in the future. Figure 1 Figure 1. Disclosures Lämmle: Takeda: Membership on an entity's Board of Directors or advisory committees; Ablynx: Membership on an entity's Board of Directors or advisory committees, Other: Travel Support, Speakers Bureau; Baxter: Other: Travel Support, Speakers Bureau; Alexion: Other: Travel Support, Speakers Bureau; Siemens: Other: Travel Support, Speakers Bureau; Bayer: Other: Travel Support, Speakers Bureau; Roche: Other: Travel Support, Speakers Bureau; Sanofi: Other: Travel Support, Speakers Bureau.


2004 ◽  
Vol 91 (01) ◽  
pp. 61-70 ◽  
Author(s):  
Baby Tholanikunnel ◽  
Berhane Ghebrehiwet ◽  
Allen Kaplan ◽  
Kusumam Joseph

SummaryCell surface proteins reported to participate in the binding and activation of the plasma kinin-forming cascade includes gC1qR, cytokeratin 1 and u-PAR. Each of these proteins binds high molecular weight kininogen (HK) as well as Factor XII. The studies on the interaction of these proteins, using dot-blot analysis, revealed that cytokeratin 1 binds to both gC1qR and u-PAR while gC1qR and u-PAR do not bind to each other. The binding properties of these proteins were further analyzed by gel filtration. When biotinylated cytokeratin 1 was incubated with either gC1qR or u-PAR and gel filtered, a new, higher molecular weight peak containing biotin was observed indicating complex formation. The protein shift was also similar to the biotin shift. Further, immunoprecipitation of solubilized endothelial cell plasma membrane proteins with anti-gC1qR recovered both gC1qR and cytokeratin 1, but not u-PAR. Immunoprecipitation with anti-u-PAR recovered only u-PAR and cytokeratin 1. By competitive ELISA, gC1qR inhibits u-PAR from binding to cytokeratin 1; u-PAR inhibits gC1qR binding to a lesser extent and requires a 10-fold molar excess. Our data suggest that formation of HK (and Factor XII) binding sites along endothelial cell membranes consists of bimolecular complexes of gC1qR-cytokeratin 1 and u-PAR-cytokeratin 1, with gC1qR binding being favored.


Sign in / Sign up

Export Citation Format

Share Document