Zonation and Seasonality of Estuarine Benthic Algae: Artificial Embankments in the River Thames

1985 ◽  
Vol 28 (1) ◽  
pp. 1-8 ◽  
Author(s):  
I. Tittley
Keyword(s):  
1989 ◽  
Vol 21 (2) ◽  
pp. 205-210 ◽  
Author(s):  
B. L. Simmons ◽  
S. L. Trengove

Increasing urbanisation of coastal areas is leading to impacts on coastal lakes which decrease their amenity for recreation and tourism. Runoff and wastewater discharge cause siltation, impact seagrass beds and change the characteristics of open waters, affecting boating, swimming, fishing and the aesthetic quality of the locale. Management of urban development and wastewater disposal is required to minimise sedimentation and nutrient enrichment. This could include development restrictions, runoff controls and a strategy for wastewater treatment and discharge. The catchment of Lake Macquarie, a marine coastal lake, has been progressively urbanised since 1945. Urbanisation, through increased stormwater runoff and point source discharges, has caused a major impact on the lake in terms of sedimentation and nutrient enrichment. Losses of lake area and navigable waters have occurred. Accompanying problems include changes in the distribution of seagrass beds and nuisance growths of benthic algae. Since the 1950's, dry weather nutrient concentrations have increased and mean water clarity has decreased. Severe problems, as observed in other New South Wales coastal lakes, for example benthic algae in Lake Illawarra and Tuggerah Lakes, have not yet developed. Because of the lead time taken to implement policies and controls, trends should be identified and policies developed now so as to avoid nutrient buildup and development of sustained problems.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1497
Author(s):  
Vladimir Razlutskij ◽  
Xueying Mei ◽  
Natallia Maisak ◽  
Elena Sysova ◽  
Dzmitry Lukashanets ◽  
...  

Fish, being an important consumer in aquatic ecosystems, plays a significant role by affecting the key processes of aquatic ecosystems. Omnivorous fish consume a variety of food both from pelagic and benthic habitats and may directly or indirectly affect the plankton community as well as the lake trophic state. We conducted a 72-day outdoor experiment in mesocosms with and without Prussian carp (Carassius auratus) to evaluate the effect of this often-stocked omnivorous fish on the plankton community and water quality. We found that the presence of fish increased the biomass of planktonic algae, total and inorganic suspended solids, leading to decreased light intensity in the water and a lower biomass of benthic algae. Fish also prevented development of submerged macrophytes and the establishment of large-bodied zooplankton. However, the fish did not increase nitrogen concentrations and even was lowered total phosphorus levels, in part due to nutrient storage in the fish. We conclude that stocking of Prussian carp should be avoided, or removed where stocked and abundant, to obtain good ecological quality of shallow lakes, characterized by clear water and high abundance of macrophytes.


2021 ◽  
pp. 126449
Author(s):  
Yuan Hui ◽  
Zhenduo Zhu ◽  
Joseph F. Atkinson ◽  
Angshuman M. Saharia

Author(s):  
P. G. Whitehead ◽  
J. Crossman ◽  
B. B. Balana ◽  
M. N. Futter ◽  
S. Comber ◽  
...  

The catchment of the River Thames, the principal river system in southern England, provides the main water supply for London but is highly vulnerable to changes in climate, land use and population. The river is eutrophic with significant algal blooms with phosphorus assumed to be the primary chemical indicator of ecosystem health. In the Thames Basin, phosphorus is available from point sources such as wastewater treatment plants and from diffuse sources such as agriculture. In order to predict vulnerability to future change, the integrated catchments model for phosphorus (INCA-P) has been applied to the river basin and used to assess the cost-effectiveness of a range of mitigation and adaptation strategies. It is shown that scenarios of future climate and land-use change will exacerbate the water quality problems, but a range of mitigation measures can improve the situation. A cost-effectiveness study has been undertaken to compare the economic benefits of each mitigation measure and to assess the phosphorus reductions achieved. The most effective strategy is to reduce fertilizer use by 20% together with the treatment of effluent to a high standard. Such measures will reduce the instream phosphorus concentrations to close to the EU Water Framework Directive target for the Thames.


Sign in / Sign up

Export Citation Format

Share Document