Effect of Short- and Long-Term Storage on Human Serum and Recombinant Apolipoprotein E Concentration

Author(s):  
Françoise Schiele ◽  
Monique Vincent-Viry ◽  
Bernard Herbeth ◽  
Athanase Visvikis ◽  
Gérard Siest
Metabolites ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 93 ◽  
Author(s):  
Cora McHugh ◽  
Thomas Flott ◽  
Casey Schooff ◽  
Zyad Smiley ◽  
Michael Puskarich ◽  
...  

Background: Though blood is an excellent biofluid for metabolomics, proteins and lipids present in blood can interfere with 1d-1H NMR spectra and disrupt quantification of metabolites. Here, we present effective macromolecule removal strategies for serum and whole blood (WB) samples. Methods: A variety of macromolecule removal strategies were compared in both WB and serum, along with tests of ultrafiltration alone and in combination with precipitation methods. Results: In healthy human serum, methanol:chloroform:water extraction with ultrafiltration was compared to methanol precipitation with and without ultrafiltration. Methods were tested in healthy pooled human serum, and in serum from patients with sepsis. Effects of long-term storage at −80 °C were tested to explore the impact of macromolecule removal strategy on serum from different conditions. In WB a variety of extraction strategies were tested in two types of WB (from pigs and baboons) to examine the impact of macromolecule removal strategies on different samples. Conclusions: In healthy human serum methanol precipitation of serum with ultrafiltration was superior, but was similar in recovery and variance to methanol:chloroform:water extraction with ultrafiltration in pooled serum from patients with sepsis. In WB, high quality, quantifiable spectra were obtained with the use of a methanol: chloroform precipitation.


Author(s):  
Daniel Żarski ◽  
Ákos Horváth ◽  
Gergely Bernáth ◽  
Sławomir Krejszeff ◽  
János Radóczi ◽  
...  

2009 ◽  
Vol 54 (6) ◽  
pp. 1411-1413 ◽  
Author(s):  
Leticia Rubio ◽  
Luis J. Martinez ◽  
Esther Martinez ◽  
Stella Martin de las Heras

2018 ◽  
Vol 2018 ◽  
pp. 1-4 ◽  
Author(s):  
Eugène H. J. M. Jansen ◽  
Piet K. Beekhof

In epidemiological and nutrition research, it is very important to evaluate the stability of biomarkers as function of both storage time and temperature. In this study, the stability of folate and vitamin B12in human serum samples has been tested after long-term storage at −80°C up to 13 years. Serum samples of 16 individuals were used in this study. The concentration of folate and vitamin B12has been determined att=0and at 1, 8, and 13 years after storage at −80°C. The folate concentrations in serum samples remained stable at −80°C. The concentration of vitamin B12was decreasing during the time of the study to about 50%. The correlation of the folate and also of the vitamin B12concentrations in the stored samples compared with the starting values was still good. Therefore, although the concentration of vitamin B12decreased upon storage, reliable comparative analyses can still be performed.


1979 ◽  
Vol 32 (5) ◽  
pp. 475 ◽  
Author(s):  
N Ratnamohan ◽  
PB Spradbrow

The cryoprotective agents dimethyl sulfoxide (DMSO), glycerol, polyvinylpyrrolidone (PVP) and dextran were evaluated for their ability to protect avian cells during storage at sub-zero temperatures. DMSO was the most effective cryoprotective agent for the short- and long-term storage of avian cells and glycerol was also effective when used at low concentrations. PVP and dextran did not protect avian cells during storage in our experiments. Primary chicken cells and avian cells at higher passage levels were successfully recovered after storage with DMSO for periods ranging from 4 to 12 months.


2021 ◽  
Vol 8 ◽  
Author(s):  
Giscard Lima ◽  
Alexander Kolliari-Turner ◽  
Fernanda Rossell Malinsky ◽  
Fergus M. Guppy ◽  
Renan Paulo Martin ◽  
...  

Introduction: Recombinant human erythropoietin (rHuEPO) administration studies involving transcriptomic approaches have demonstrated a gene expression signature that could aid blood doping detection. However, current anti-doping testing does not involve collecting whole blood into tubes with RNA preservative. This study investigated if whole blood in long-term storage and whole blood left over from standard hematological testing in short-term storage could be used for transcriptomic analysis despite lacking RNA preservation.Methods: Whole blood samples were collected from twelve and fourteen healthy nonathletic males, for long-term and short-term storage experiments. Long-term storage involved whole blood collected into Tempus™ tubes and K2EDTA tubes and subjected to long-term (i.e., ‒80°C) storage and RNA extracted. Short-term storage involved whole blood collected into K2EDTA tubes and stored at 4°C for 6‒48 h and then incubated at room temperature for 1 and 2 h prior to addition of RNA preservative. RNA quantity, purity, and integrity were analyzed in addition to RNA-Seq using the MGI DNBSEQ-G400 on RNA from both the short- and long-term storage studies. Genes presenting a fold change (FC) of >1.1 or < ‒1.1 with p ≤ 0.05 for each comparison were considered differentially expressed. Microarray analysis using the Affymetrix GeneChip® Human Transcriptome 2.0 Array was additionally conducted on RNA from the short-term study with a false discovery ratio (FDR) of ≤0.05 and an FC of >1.1 or < ‒1.1 applied to identify differentially expressed genes.Results: RNA quantity, purity, and integrity from whole blood subjected to short- and long-term storage were sufficient for gene expression analysis. Long-term storage: when comparing blood tubes with and without RNA preservation 4,058 transcripts (6% of coding and non-coding transcripts) were differentially expressed using microarray and 658 genes (3.4% of mapped genes) were differentially expressed using RNA-Seq. Short-term storage: mean RNA integrity and yield were not significantly different at any of the time points. RNA-Seq analysis revealed a very small number of differentially expressed genes (70 or 1.37% of mapped genes) when comparing samples stored between 6 and 48 h without RNA preservative. None of the genes previously identified in rHuEPO administration studies were differently expressed in either long- or short-term storage experiments.Conclusion: RNA quantity, purity, and integrity were not significantly compromised from short- or long-term storage in blood storage tubes lacking RNA stabilization, indicating that transcriptomic analysis could be conducted using anti-doping samples collected or biobanked without RNA preservation.


Sign in / Sign up

Export Citation Format

Share Document