scholarly journals Comparison of temperature mapping methods for experimental validation of numerical heat transfer analysis of biomaterials and medical devices

2021 ◽  
Vol 7 (2) ◽  
pp. 640-643
Author(s):  
Sylvia Pfensig ◽  
Carsten Tautorat ◽  
Swen Grossmann ◽  
Niels Grabow ◽  
Klaus-Peter Schmitz ◽  
...  

Abstract Titanium represents an important biomaterial for implantable medical devices. During medical device manufacturing by means of welding, implant structures are partially exposed to high temperatures. Additionally, active implants such as pacemakers can heat up during operation. Therefore, numerical studies of heat propagation within titanium structures represent an essential tool to assess functionality and safety of medical devices. The current study focusses on the development of a method for experimental validation of numerical heat transfer analysis of biomaterials such as titanium. Numerical heat transfer analysis was performed using the software Abaqus. A finite-element model was established including material properties such as density, thermal conductivity und specific heat capacity. Temperature distribution among a locally applied thermal load was calculated. Furthermore, effects such as convection were considered. For validation, an experimental setup was implemented according to the numerical calculation using a local heating tool. Heat propagation in the sample was determined, respectively. Radiation-based heat determination was performed using an infrared thermographic camera aligned parallel to the sample surface. Contact-based heat determination was performed using thermocouples fixed to the surface at defined distances from the point of local heat input. For evaluation of numerical and experimental results, temperature- time curves were compared for five distinct measuring points, respectively. While infrared thermography offers the advantage of non-contact measurements, difficulties may arise from the definition of correct emissivity and challenging sample surface characteristics, such as metallic reflectance and surface texture. The thermocouple-based temperature measurement shows a high sensitivity to local temperature changes, but it is not always suitable due to the influence on the sample by thermocouple fixation. Infrared thermography and thermocouple based temperature measurements represent suitable procedures for experimental validation of numerical heat transfer analysis of titanium. An individual decision for the most suitable method must be made considering the specific sample and its further application.

2021 ◽  
Author(s):  
Karan Anand

This research provides a computational analysis of heat transfer due to micro jet-impingement inside a gas turbine vane. A preliminary-parametric analysis of axisymmetric single jet was reported to better understand micro jet-impingement. In general, it was seen that as the Reynolds number increased the Nusselt number values increased. The jet to target spacing had a considerably lower impact on the heat transfer rates. Around 30% improvement was seen by reducing the diameter to half while changing the shape to an ellipse saw 20.8% improvement in Nusselt value. The numerical investigation was then followed by studying the heat transfer characteristics in a three-dimensional, actual-shaped turbine vane. Effects of jet inclination showed enhanced mixing and secondary heat transfer peaks. The effect of reducing the diameter of the jets to 0.125 mm yielded 55% heat transfer improvements compared to 0.51 mm; the tapering effect also enhanced the local heat transfer values as local velocities at jet exit increased.


2012 ◽  
Vol 433-440 ◽  
pp. 2716-2720
Author(s):  
Jing De Zhao ◽  
Ni Liu ◽  
Yi Wang

Ice Storage air-condition can be used to shift electrical load from on-peak hours to off-peak hours, which can bring mutual benefits to power supplier and consumers. An unsteady heat transfer numerical model is developed to predict the increment of thickness of ice layer of flake ice storage system with Cu-H2O nanofluids solidification. In this study, the speed of increment of ice layer of water and Cu-H2O nanofluids are compared.


Author(s):  
Preetham Rao ◽  
Sreekanth Teeparthi

The skeleton of a vehicle, known as a Body in White (BiW), with hundreds of sheet metal components is painted in an automotive assembly paint shop. Multiple ovens are used to bake and cure the layers of paint put on the BiW in a paint shop. These ovens are hundreds of feet long and impart heat to a BiW using radiation and convection modes. Prediction of temperature–time history at different locations of a BiW as it passes through a paint bake oven is important to understand the quality of the cured paint. This paper describes a method to predict the same using Computational Fluid Dynamics (CFD) and numerical heat transfer methods, combined with a single generic measurement from the oven. The flow field and the convection parameters around the BiW are obtained from a few quasi-steady CFD simulations of the BiW in the oven. A detailed temperature map on a BiW is then obtained by coupling the CFD results to a transient heat transfer analysis with a moving model of the BiW inside the oven in a thermal nodal network solver. Comparison of the results from the simulation of an actual vehicle and proposed improvements are discussed. The coupled simulation approach is shown to result in a reasonable level of accuracy within acceptable timelines for such a multi-scale physical problem with a highly complicated geometry.


Sign in / Sign up

Export Citation Format

Share Document