scholarly journals Study of Rheological Properties of Bituminous Binders in Middle and High Temperatures

2016 ◽  
Vol 12 (1) ◽  
pp. 13-20 ◽  
Author(s):  
Eva Remišová ◽  
Viera Zatkaliková ◽  
František Schlosser

Abstract The bitumen binders in road pavements are exposed traffic loading effect at different climatic conditions. A resistance to these stresses depends on bitumen properties as well. The paper presents rheological properties (G*, δ, ν*) determined and compared for four bituminous binders (unmodified and polymer modified bitumen) at temperature 46 – 60 (80) °C and dynamic viscosity at temperature 130 – 190 °C (Brookfield viscometer). On the basis of viscosity results it is possible to set optimal production and compaction temperatures. Elastic and viscous behavior of binder in the middle temperature is determined in rheometers. The higher value of complex modulus, the stiffer bitumen binder is able to resist deformation. The greater content of elastic components (e.g. polymer in bitumen) varies mainly elastic-viscous properties of primary bitumen.

2018 ◽  
Vol 80 (4) ◽  
Author(s):  
Ebenezer Akin Oluwasola ◽  
Mohd Rosli Hainin ◽  
Mohd Khairul Idham ◽  
Modupe Abayomi

The failures of the flexible pavements are not only caused by harsh climatic conditions prevailing in most of the tropical countries but also due to increase in traffic. The ethylene vinyl acetate (EVA) modification of the bitumen can strengthen the properties of binders and also improve the quality of bitumen used for pavements construction. This paper reports the changes in physical and rheological properties of unaged 80-100 grade bitumen modified with different percentages of EVA and compared with the properties of PG 76 binder. The penetration, softening point and viscosity properties were studied. The rheological properties were measured using dynamic shear rheometer and the test was performed at temperatures ranging from 46 to 76 ⁰C at intervals of 6 ⁰C. It was noted that, after modification, the properties of binders had improved. The results show that 5% EVA content by weight in modified binder is adequate in terms of physical and rheological properties studied. In addition, the properties of 5% EVA modified 80-100 grade bitumen are similar to PG 76 binder.


2012 ◽  
Vol 509 ◽  
pp. 155-161 ◽  
Author(s):  
Ji Zhe Zhang ◽  
Martin Van de Ven ◽  
Shao Peng Wu

This paper investigated the influence of nanoclay on the properties of polymer modified bitumen(PMB). The nanoclay-polymer modified bitumen has been produced by mixing a standard 70/100 pen bitumen with polymer at a fixed proportion and then mixed with different amount of nanoclay. The rheological behaviour of the samples have been determined using dynamic shear rheometer. The morphology of the samples as well as the distribution of polymer and nanoclay throughout the bitumen have been characterized with a fluorescence microscopy. The result indicate that the rheological properties of nanoclay-polymer modified bitumens dependent on the percentage nanoclay. The morphology result shows that dispersed polymer particles existed in continuous bitumen phase and the addition of nanoclay does not seem to change the particle size of the polymer.


2015 ◽  
Vol 16 (sup1) ◽  
pp. 349-361 ◽  
Author(s):  
Tirupan Mandal ◽  
Ryan Sylla ◽  
Hussain U. Bahia ◽  
Shayan Barmand

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7727
Author(s):  
Xiaorui Zhang ◽  
Chao Han ◽  
Jun Yang ◽  
Xinquan Xu ◽  
Fan Zhang

With the increasing traffic loading and changing climatic conditions, there is a need to use novel superior performing pavement materials such as high-modulus asphalt binders and asphalt mixtures to mitigate field distress such as rutting, cracking, etc. This laboratory study was thus conducted to explore and substantiate the usage of Rubber Polymer Composite Modifier (RPCM) for high-modulus asphalt binder modification. The base asphalt binder used in the study comprised A-70# Petroleum asphalt binder with RPCM dosages of 0.25%, 0.30%, 0.35%, 0.40% and 0.45%, separately. The laboratory tests conducted for characterizing the asphalt binder rheological and morphological properties included the dynamic mechanical analysis (DM), temperature-frequency sweep in the dynamic shear rheometer (DSR) device, bending beam rheometer (BBR), and florescence microscopic (FM) imaging. The corresponding test results exhibited satisfactory compatibility and potential for using RPCM as a high-modulus asphalt binder modifier to enhance the base asphalt binder’s rheological properties, both with respect to high- and low-temperature performance improvements. For the A-70# Petroleum asphalt binder that was evaluated, the optimum RPCM dosage was found to be 0.30–0.35%. In comparison to styrene–butadiene–styrene (SBS), asphalt binder modification with RPCM exhibited superior high-temperature rutting resistance properties (as measured in terms of the complex modulus and phase angle) and vice versa for the low-temperature cracking properties. Overall, the study beneficially contributes to the literature through provision of a reference datum toward the exploratory usage of RPCM for high-modulus asphalt binder modification and performance enhancements.


Sign in / Sign up

Export Citation Format

Share Document