Methods of test for petroleum and its products. BS2000-518. Bitumen and bituminous binders. Visualisation of polymer dispersion in polymer modified bitumen

2015 ◽  
2016 ◽  
Vol 12 (1) ◽  
pp. 13-20 ◽  
Author(s):  
Eva Remišová ◽  
Viera Zatkaliková ◽  
František Schlosser

Abstract The bitumen binders in road pavements are exposed traffic loading effect at different climatic conditions. A resistance to these stresses depends on bitumen properties as well. The paper presents rheological properties (G*, δ, ν*) determined and compared for four bituminous binders (unmodified and polymer modified bitumen) at temperature 46 – 60 (80) °C and dynamic viscosity at temperature 130 – 190 °C (Brookfield viscometer). On the basis of viscosity results it is possible to set optimal production and compaction temperatures. Elastic and viscous behavior of binder in the middle temperature is determined in rheometers. The higher value of complex modulus, the stiffer bitumen binder is able to resist deformation. The greater content of elastic components (e.g. polymer in bitumen) varies mainly elastic-viscous properties of primary bitumen.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2055
Author(s):  
Krzysztof Maciejewski ◽  
Anna Chomicz-Kowalska

This study explores the effects of foaming on three selected bituminous binders: 50/70 paving grade bitumen, 45/80-55 polymer modified bitumen and 45/80-80 HiMA binder. The first part of the investigations included the evaluation of the foaming performance in terms of foaming temperature and foaming water content with the utilization of desirability functions and based on the equality of maximum expansion ratio and bitumen foam half-life. The second part of the study investigated the effects of foaming on the chemical structure of the binders using Fourier-transform infrared spectroscopy. The results of the spectroscopic measurements permitted calculation of structural indices specific to functional groups associated with bitumen oxidation, as well as those indicative of elastomeric modification. The results have shown that the different types of bitumen exhibited different foaming characteristics, which was most evident in bitumen foam half-lives, with the HiMA binder performing the best. The spectrometric measurements did not show any significant effects of foaming on the chemical structure of the evaluated binders related to oxidative stress, neither were any major changes in the PmB-specific regions found.


2021 ◽  
Vol 13 (4) ◽  
pp. 2146
Author(s):  
Anik Gupta ◽  
Carlos J. Slebi-Acevedo ◽  
Esther Lizasoain-Arteaga ◽  
Jorge Rodriguez-Hernandez ◽  
Daniel Castro-Fresno

Porous asphalt (PA) mixtures are more environmentally friendly but have lower durability than dense-graded mixtures. Additives can be incorporated into PA mixtures to enhance their mechanical strength; however, they may compromise the hydraulic characteristics, increase the total cost of pavement, and negatively affect the environment. In this paper, PA mixtures were produced with 5 different types of additives including 4 fibers and 1 filler. Their performances were compared with the reference mixtures containing virgin bitumen and polymer-modified bitumen. The performance of all mixes was assessed using: mechanical, hydraulic, economic, and environmental indicators. Then, the Delphi method was applied to compute the relative weights for the parameters in multi-criteria decision-making methods. Evaluation based on distance from average solution (EDAS), technique for order of the preference by similarity to ideal solution (TOPSIS), and weighted aggregated sum product assessment (WASPAS) were employed to rank the additives. According to the results obtained, aramid pulp displayed comparable and, for some parameters such as abrasion resistance, even better performance than polymer-modified bitumen, whereas cellulose fiber demonstrated the best performance regarding sustainability, due to economic and environmental benefits.


Sign in / Sign up

Export Citation Format

Share Document