The roles of biomolecules in corrosion induction and inhibition of corrosion: a possible insight

2020 ◽  
Vol 38 (5) ◽  
pp. 403-421
Author(s):  
Santosh Kumar Karn ◽  
Anne Bhambri ◽  
Ian R. Jenkinson ◽  
Jizhou Duan ◽  
Awanish Kumar

AbstractBiofilms cause huge economic loss to the industry through corrosion. A deeper understanding of how biofilms form, develop and interact will help to decipher their roles in promoting and inhibiting corrosion, thus in controlling it. The present review explores most mechanisms of biofilm development and maintenance with particular emphasis on the roles of the biomolecules characteristic of biofilms, including exopolysaccharides (EPSs), proteins/enzymes, lipids, DNA and other metabolites in the corrosion process. These biomolecules play a significant role in the electron transfer process resulting in corrosion induction and inhibition. Microbial attachment, biofilm formation, the EPS matrix and both positive and negative effects by specific biofilm-forming genes all play roles in the electron transfer process. The current review describes these roles in detail. Although challenging to understand and control, the potential of biomolecules in the corrosion process is huge, and the coming decades will witness significant progress in the field. As well as discussing the technologies available for investigating corrosion induction and its inhibition, we also point to gaps in this knowledge.

2017 ◽  
Vol 19 (22) ◽  
pp. 14412-14423 ◽  
Author(s):  
Ewelina Krzyszkowska ◽  
Justyna Walkowiak-Kulikowska ◽  
Sven Stienen ◽  
Aleksandra Wojcik

Quenching of the thionine singlet excited state in covalently functionalized graphene oxide with an efficient back electron transfer process.


Nano Hybrids ◽  
2013 ◽  
Vol 3 ◽  
pp. 1-23 ◽  
Author(s):  
Chinwe O. Ikpo ◽  
Njagi Njomo ◽  
Kenneth I. Ozoemena ◽  
Tesfaye Waryo ◽  
Rasaq A. Olowu ◽  
...  

The electrochemical dynamics of a film of FeCo nanoparticles were studied on a glassy carbon electrode (GCE). The film was found to be electroactive in 1 M LiClO4 containing 1:1 v/v ethylene carbonate dimethyl carbonate electrolyte system. Cyclic voltammetric experiments revealed a diffusion-controlled electron transfer process on the GCE/FeCo electrode surface. Further interrogation on the electrochemical properties of the FeCo nanoelectrode in an oxygen saturated 1 M LiClO4 containing 1:1 v/v ethylene-carbonate-dimethyl carbonate revealed that the nanoelectrode showed good response towards the electro-catalytic reduction of molecular oxygen with a Tafel slope of about 120 mV which is close to the theoretical 118 mV for a single electron transfer process in the rate limiting step; and a transfer coefficient (α) of 0.49. The heterogeneous rate constant of electron transfer (ket), exchange current density (io) and time constant (τ) were calculated from data obtained from electrochemical impedance spectroscopy and found to have values of 2.3 x 10-5 cm s-1, 1.6 x 10-4 A cm-2 and 2.4 x 10-4 s rad-1, respectively.


2013 ◽  
Vol 567 ◽  
pp. 1-5 ◽  
Author(s):  
Serge Monturet ◽  
Mikaël Kepenekian ◽  
Roberto Robles ◽  
Nicolás Lorente ◽  
Christian Joachim

Sign in / Sign up

Export Citation Format

Share Document