CFD Simulation of Flow Through the Reconstructed Microstructure of Fibrous Gas Diffusion Layer in a Polymer Electrolyte Membrane Fuel Cell

2018 ◽  
Vol 13 (1) ◽  
Author(s):  
Venkata Suresh Patnaikuni ◽  
Sreenivas Jayanti

AbstractThe gas diffusion layer (GDL) is one of the key components in a polymer electrolyte membrane (PEM) fuel cell. Generally it is a carbon-based fibrous medium that allows for the transport of electrons through the fibers and distributes the reactants through the void space to the catalyst layer in a PEM fuel cell. In the present work, a microstructure study of reactant transport is carried out by reconstructing the typical fibrous microstructure of the GDL and investigating the transport characteristics of the porous medium using computational fluid dynamics (CFD) simulations. The results confirm the applicability of Darcy’s law formulation for permeability determination and Bruggemann correction for calculation of effective diffusivity for typical conditions encountered in PEM fuel cells. Macroscopic material properties such as through-plane and in-plane permeabilities and effective diffusion coefficient are determined and compared against experimental values reported in the literature.

Author(s):  
J. Yablecki ◽  
A. Bazylak

The anisotropic and heterogeneous effective thermal conductivity of the gas diffusion layer (GDL) of the polymer electrolyte membrane fuel cell was determined in the through-plane direction using an analytical thermal resistance model. The geometry of the GDL was reconstructed using porosity profiles obtained through microscale computed tomography imaging of four commercially available GDL materials. The effective thermal conductivity increases almost linearly with increasing bipolar plate compaction pressure. The effective thermal conductivity was also seen to increase with increasing GDL thickness as bulk porosity remained almost constant. The effect of the heterogeneous through-plane porosity distribution on the effective thermal conductivity is discussed. The outcomes of this work will provide insight into the effect of heterogeneity and anisotropy of the GDL on the thermal management required for improved PEMFC performance.


Sign in / Sign up

Export Citation Format

Share Document