scholarly journals Uniform congruence counting for Schottky semigroups in SL2(𝐙)

2019 ◽  
Vol 2019 (753) ◽  
pp. 89-135 ◽  
Author(s):  
Michael Magee ◽  
Hee Oh ◽  
Dale Winter

AbstractLet Γ be a Schottky semigroup in {\mathrm{SL}_{2}(\mathbf{Z})}, and for {q\in\mathbf{N}}, let{\Gamma(q):=\{\gamma\in\Gamma:\gamma=e~{}(\mathrm{mod}~{}q)\}}be its congruence subsemigroup of level q. Let δ denote the Hausdorff dimension of the limit set of Γ. We prove the following uniform congruence counting theorem with respect to the family of Euclidean norm balls {B_{R}} in {M_{2}(\mathbf{R})} of radius R: for all positive integer q with no small prime factors,\#(\Gamma(q)\cap B_{R})=c_{\Gamma}\frac{R^{2\delta}}{\#(\mathrm{SL}_{2}(% \mathbf{Z}/q\mathbf{Z}))}+O(q^{C}R^{2\delta-\epsilon})as {R\to\infty} for some {c_{\Gamma}>0,C>0,\epsilon>0} which are independent of q. Our technique also applies to give a similar counting result for the continued fractions semigroup of {\mathrm{SL}_{2}(\mathbf{Z})}, which arises in the study of Zaremba’s conjecture on continued fractions.

2012 ◽  
Vol 93 (1-2) ◽  
pp. 85-90 ◽  
Author(s):  
ANDREJ DUJELLA ◽  
FLORIAN LUCA

AbstractWe study positive integers $n$ such that $n\phi (n)\equiv 2\hspace{0.167em} {\rm mod}\hspace{0.167em} \sigma (n)$, where $\phi (n)$ and $\sigma (n)$ are the Euler function and the sum of divisors function of the positive integer $n$, respectively. We give a general ineffective result showing that there are only finitely many such $n$ whose prime factors belong to a fixed finite set. When this finite set consists only of the two primes $2$ and $3$ we use continued fractions to find all such positive integers $n$.


2020 ◽  
Vol 63 (4) ◽  
pp. 1031-1047
Author(s):  
Florian Luca ◽  
Sibusiso Mabaso ◽  
Pantelimon Stănică

AbstractIn this paper, for a positive integer n ≥ 1, we look at the size and prime factors of the iterates of the Ramanujan τ function applied to n.


2019 ◽  
Vol 2019 (746) ◽  
pp. 149-170
Author(s):  
Pekka Pankka ◽  
Juan Souto

Abstract We prove that Kleinian groups whose limit sets are Cantor sets of Hausdorff dimension < 1 are free. On the other hand we construct for any ε > 0 an example of a non-free purely hyperbolic Kleinian group whose limit set is a Cantor set of Hausdorff dimension < 1 + ε.


1955 ◽  
Vol 7 ◽  
pp. 347-357 ◽  
Author(s):  
D. H. Lehmer

This paper is concerned with the numbers which are relatively prime to a given positive integerwhere the p's are the distinct prime factors of n. Since these numbers recur periodically with period n, it suffices to study the ϕ(n) numbers ≤n and relatively prime to n.


1985 ◽  
Vol 5 (1) ◽  
pp. 27-46 ◽  
Author(s):  
Colin Boyd

AbstractA class of vector fields on the 2-torus, which includes Cherry fields, is studied. Natural paths through this class are defined and it is shown that the parameters for which the vector field is unstable is the closure ofhas irrational rotation number}, where ƒ is a certain map of the circle andRtis rotation throught. This is shown to be a Cantor set of zero Hausdorff dimension. The Cherry fields are shown to form a family of codimension one submanifolds of the set of vector fields. The natural paths are shown to be stable paths.


Author(s):  
Derek Smith

This chapter discusses Slothouber–Graatsma–Conway puzzle, which asks one to assemble six 1 × 2 × 2 pieces and three 1 × 1 × 1 pieces into the shape of a 3 × 3 × 3 cube. The puzzle has been generalized to larger cubes, and there is an infinite family of such puzzles. The chapter's primary argument is that, for any odd positive integer n = 2k + 1, there is exactly one way, up to symmetry, to make an n × n × n cube out of n tiny 1 × 1 × 1 cubes and six of each of a set of rectangular blocks. The chapter describes a way to solve each puzzle in the family and explains why there are no other solutions. It then presents several related open problems.


1967 ◽  
Vol 15 (4) ◽  
pp. 249-255
Author(s):  
Sean Mc Donagh

1. In deriving an expression for the number of representations of a sufficiently large integer N in the formwhere k: is a positive integer, s(k) a suitably large function of k and pi is a prime number, i = 1, 2, …, s(k), by Vinogradov's method it is necessary to obtain estimates for trigonometrical sums of the typewhere ω = l/k and the real number a satisfies 0 ≦ α ≦ 1 and is “near” a rational number a/q, (a, q) = 1, with “large” denominator q. See Estermann (1), Chapter 3, for the case k = 1 or Hua (2), for the general case. The meaning of “near” and “arge” is made clear below—Lemma 4—as it is necessary for us to quote Hua's estimate. In this paper, in Theorem 1, an estimate is obtained for the trigonometrical sumwhere α satisfies the same conditions as above and where π denotes a squarefree number with r prime factors. This estimate enables one to derive expressions for the number of representations of a sufficiently large integer N in the formwhere s(k) has the same meaning as above and where πri, i = 1, 2, …, s(k), denotes a square-free integer with ri prime factors.


Sign in / Sign up

Export Citation Format

Share Document