scholarly journals Embedded minimal surfaces of finite topology

2019 ◽  
Vol 2019 (753) ◽  
pp. 159-191 ◽  
Author(s):  
William H. Meeks III ◽  
Joaquín Pérez

AbstractIn this paper we prove that a complete, embedded minimal surface M in {\mathbb{R}^{3}} with finite topology and compact boundary (possibly empty) is conformally a compact Riemann surface {\overline{M}} with boundary punctured in a finite number of interior points and that M can be represented in terms of meromorphic data on its conformal completion {\overline{M}}. In particular, we demonstrate that M is a minimal surface of finite type and describe how this property permits a classification of the asymptotic behavior of M.

2007 ◽  
Vol 2007 ◽  
pp. 1-29 ◽  
Author(s):  
Ewa Tyszkowska

A compact Riemann surfaceXof genusg>1is said to bep-hyperellipticifXadmits a conformal involutionρ, for whichX/ρis an orbifold of genusp. If in additionXisq-hyperelliptic, then we say thatXispq-hyperelliptic. Here we study conformal actions onpq-hyperelliptic Riemann surfaces with centralp- andq-hyperelliptic involutions.


2021 ◽  
pp. 594-603
Author(s):  
Peshawa M. Khudhur

Assume that  is a meromorphic fuction of degree n where X is compact Riemann surface of genus g. The meromorphic function gives a branched cover of the compact Riemann surface X. Classes of such covers are in one to one correspondence with conjugacy classes of r-tuples (  of permutations in the symmetric group , in which  and s generate a transitive subgroup G of  This work is a contribution to the classification of all primitive groups of degree 7, where X is of genus one.


2002 ◽  
Vol 74 (4) ◽  
pp. 585-588 ◽  
Author(s):  
PHILIPPE CASTILLON

In this short note, we announce a result relating the geometry of a riemannian surface to the positivity of some operators on this surface (the operators considered here are of the form surface Laplacian plus a scalar multiple of the curvature function). In particular we obtain a theorem "à la Huber'': under a spectral hypothesis we prove that the surface is conformally equivalent to a Riemann surface with a finite number of points removed. This problem has its origin in the study of stable minimal surfaces.


Author(s):  
A. Fogden

AbstractA systematic analysis of a family of triply periodic minimal surfaces of genus seven and trigonal symmetry is given. The family is found to contain five such surfaces free from self-intersections, three of which are previously unknown. Exact parametrisations of all surfaces are provided using the Weierstrass representation.


2021 ◽  
Vol 29 (6) ◽  
pp. 835-850
Author(s):  
Vladislav Kruglov ◽  
◽  
Olga Pochinka ◽  
◽  

Purpose. The purpose of this study is to consider the class of Morse – Smale flows on surfaces, to characterize its subclass consisting of flows with a finite number of moduli of stability, and to obtain a topological classification of such flows up to topological conjugacy, that is, to find an invariant that shows that there exists a homeomorphism that transfers the trajectories of one flow to the trajectories of another while preserving the direction of movement and the time of movement along the trajectories; for the obtained invariant, to construct a polynomial algorithm for recognizing its isomorphism and to construct the realisation of the invariant by a standard flow on the surface. Methods. Methods for finding moduli of topological conjugacy go back to the classical works of J. Palis, W. di Melo and use smooth flow lianerization in a neighborhood of equilibrium states and limit cycles. For the classification of flows, the traditional methods of dividing the phase surface into regions with the same behavior of trajectories are used, which are a modification of the methods of A. A. Andronov, E. A. Leontovich, and A. G. Mayer. Results. It is shown that a Morse – Smale flow on a surface has a finite number of moduli if and only if it does not have a trajectory going from one limit cycle to another. For a subclass of Morse – Smale flows with a finite number of moduli, a classification is done up to topological conjugacy by means of an equipped graph. Conclusion. The criterion for the finiteness of the number of moduli of Morse – Smale flows on surfaces is obtained. A topological invariant is constructed that describes the topological conjugacy class of a Morse – Smale flow on a surface with a finite number of modules, that is, without trajectories going from one limit cycle to another.


Author(s):  
Raffaele Di Gregorio ◽  
Alessandro Cammarata ◽  
Rosario Sinatra

The comparison of mechanisms with different topology or with different geometry, but with the same topology, is a necessary operation during the design of a machine sized for a given task. Therefore, tools that evaluate the dynamic performances of a mechanism are welcomed. This paper deals with the dynamic isotropy of 2-dof mechanisms starting from the definition introduced in a previous paper. In particular, starting from the condition that identifies the dynamically isotropic configurations, it shows that, provided some special cases are not considered, 2-dof mechanisms have at most a finite number of isotropic configurations. Moreover, it shows that, provided the dynamically isotropic configurations are excluded, the geometric locus of the configuration space that collects the points associated to configurations with the same dynamic isotropy is constituted by closed curves. This results will allow the classification of 2-dof mechanisms from the dynamic-isotropy point of view, and the definition of some methodologies for the characterization of the dynamic isotropy of these mechanisms. Finally, examples of applications of the obtained results will be given.


Sign in / Sign up

Export Citation Format

Share Document