scholarly journals Nonhomogeneous nonlinear oscillator with damping: asymptotic analysis in continuous and discrete time

2019 ◽  
Vol 52 (1) ◽  
pp. 274-282
Author(s):  
Behzad Djafari Rouhani ◽  
Mohsen Rahimi Piranfar

AbstractWe consider the following second order evolution equation modelling a nonlinear oscillator with damping$$\ddot{u} (t) + \gamma \dot u(t) + Au\left( t \right) = f\left( t \right),\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {{\rm{SEE}}} \right)$$where A is a maximal monotone and α-inverse strongly monotone operator in a real Hilbert space H. With suitable assumptions on γ and f(t) we show that A−1(0) ≠ ∅, if and only if (SEE) has a bounded solution and in this case we provide approximation results for elements of A−1(0) by proving weak and strong convergence theorems for solutions to (SEE) showing that the limit belongs to A−1(0). As a discrete version of (SEE), we consider the following second order difference equation$${u_{n + 1}} - {u_n} - {\alpha _n}\left( {{u_n} - {u_{n - 1}}} \right) + {\lambda _n}A{u_{n + 1}\ni} f\left( t \right),$$where A is assumed to be only maximal monotone (possibly multivalued). By using the results in [Djafari Rouhani B., Khatibzadeh H., On the proximal point algorithm, J. Optim. Theory Appl., 2008, 137, 411–417], we prove ergodic, weak and strong convergence theorems for the sequence un, and show that the limit is the asymptotic center of un and belongs to A−1(0). This again shows that A−1(0) ≠ ∅ if and only if un is bounded. Also these results solve an open problem raised in [Alvarez F., Attouch H., An inertial proximal method for maximal monotone operators via dicretization of a nonlinear oscillator with damping, Set Valued Anal., 2001, 9, 3–11], namely the study of the convergence results for the inexact inertial proximal algorithm. Our paper is motivated by the previous results in [Djafari Rouhani B., Asymptotic behaviour of quasi-autonomous dissipative systems in Hilbert spaces, J. Math. Anal. Appl., 1990, 147, 465–476; Djafari Rouhani B., Asymptotic behaviour of almost nonexpansive sequences in a Hilbert space, J. Math. Anal. Appl., 1990, 151, 226–235; Djafari Rouhani B., Khatibzadeh H., Asymptotic behavior of bounded solutions to some second order evolution systems, Rocky Mountain J. Math., 2010, 40, 1289–1311; Djafari Rouhani B., Khatibzadeh H., A strong convergence theorem for solutions to a nonhomogeneous second order evolution equation, J. Math. Anal. Appl., 2010, 363, 648–654; Djafari Rouhani B., Khatibzadeh H., Asymptotic behavior of bounded solutions to a class of second order nonhomogeneous evolution equations, Nonlinear Anal., 2009, 70, 4369–4376; Djafari Rouhani B., Khatibzadeh H., On the proximal point algorithm, J. Optim. Theory Appl., 2008, 137, 411–417] and significantly improves upon the results of [Attouch H., Maingé P. E., Asymptotic behavior of second-order dissipative evolution equations combining potential with non-potential effects, ESAIM Control Optim. Calc. Var., 2011, 17(3), 836–857], and [Alvarez F., Attouch H., An inertial proximal method for maximal monotone operators via dicretization of a nonlinear oscillator with damping, Set Valued Anal., 2001, 9, 3–11].

2004 ◽  
Vol 2004 (3) ◽  
pp. 239-249 ◽  
Author(s):  
Fumiaki Kohsaka ◽  
Wataru Takahashi

We first introduce a modified proximal point algorithm for maximal monotone operators in a Banach space. Next, we obtain a strong convergence theorem for resolvents of maximal monotone operators in a Banach space which generalizes the previous result by Kamimura and Takahashi in a Hilbert space. Using this result, we deal with the convex minimization problem and the variational inequality problem in a Banach space.


2021 ◽  
Vol 31 (2) ◽  
pp. 117-124

One of the major problems in the theory of maximal monotone operators is to find a point in the solution set Zer( ), set of zeros of maximal monotone mapping . The problem of finding a zero of a maximal monotone in real Hilbert space has been investigated by many researchers. Rockafellar considered the proximal point algorithm and proved the weak convergence of this algorithm with the maximal monotone operator. Güler gave an example showing that Rockafellar’s proximal point algorithm does not converge strongly in an infinite-dimensional Hilbert space. In this paper, we consider an explicit method that is strong convergence in an infinite-dimensional Hilbert space and a simple variant of the hybrid steepest-descent method, introduced by Yamada. The strong convergence of this method is proved under some mild conditions. Finally, we give an application for the optimization problem and present some numerical experiments to illustrate the effectiveness of the proposed algorithm.


2015 ◽  
Vol 23 (2) ◽  
pp. 133-146
Author(s):  
Hadi Khatibzadeh ◽  
Sajad Ranjbar

Abstract In this paper, convergence of the sequence generated by the inexact form of the inertial proximal algorithm is studied. This algorithm which is obtained by the discretization of a nonlinear oscillator with damping dynamical system, has been introduced by Alvarez and Attouch (2001) and Jules and Maingé (2002) for the approximation of a zero of a maximal monotone operator. We establish weak and strong convergence results for the inexact inertial proximal algorithm with and without the summability assumption on errors, under different conditions on parameters. Our theorems extend the results on the inertial proximal algorithm established by Alvarez and Attouch (2001) and rules and Maingé (2002) as well as the results on the standard proximal point algorithm established by Brézis and Lions (1978), Lions (1978), Djafari Rouhani and Khatibzadeh (2008) and Khatibzadeh (2012). We also answer questions of Alvarez and Attouch (2001).


2011 ◽  
Vol 2011 ◽  
pp. 1-31 ◽  
Author(s):  
Kriengsak Wattanawitoon ◽  
Poom Kumam

We prove strong and weak convergence theorems of modified hybrid proximal-point algorithms for finding a common element of the zero point of a maximal monotone operator, the set of solutions of equilibrium problems, and the set of solution of the variational inequality operators of an inverse strongly monotone in a Banach space under different conditions. Moreover, applications to complementarity problems are given. Our results modify and improve the recently announced ones by Li and Song (2008) and many authors.


2017 ◽  
Vol 20 (02) ◽  
pp. 1750015 ◽  
Author(s):  
Ulrich Kohlenbach ◽  
Laurenţiu Leuştean ◽  
Adriana Nicolae

We provide in a unified way quantitative forms of strong convergence results for numerous iterative procedures which satisfy a general type of Fejér monotonicity where the convergence uses the compactness of the underlying set. These quantitative versions are in the form of explicit rates of so-called metastability in the sense of Tao. Our approach covers examples ranging from the proximal point algorithm for maximal monotone operators to various fixed point iterations [Formula: see text] for firmly nonexpansive, asymptotically nonexpansive, strictly pseudo-contractive and other types of mappings. Many of the results hold in a general metric setting with some convexity structure added (so-called [Formula: see text]-hyperbolic spaces). Sometimes uniform convexity is assumed still covering the important class of CAT(0)-spaces due to Gromov.


Sign in / Sign up

Export Citation Format

Share Document