scholarly journals Strong convergence of an iterative sequence for maximal monotone operators in a Banach space

2004 ◽  
Vol 2004 (3) ◽  
pp. 239-249 ◽  
Author(s):  
Fumiaki Kohsaka ◽  
Wataru Takahashi

We first introduce a modified proximal point algorithm for maximal monotone operators in a Banach space. Next, we obtain a strong convergence theorem for resolvents of maximal monotone operators in a Banach space which generalizes the previous result by Kamimura and Takahashi in a Hilbert space. Using this result, we deal with the convex minimization problem and the variational inequality problem in a Banach space.

2020 ◽  
Vol 36 (2) ◽  
pp. 229-240
Author(s):  
C. E. CHIDUME ◽  
◽  
G. S. DE SOUZA ◽  
O. M. ROMANUS ◽  
U. V. NNYABA ◽  
...  

An algorithm is constructed to approximate a zero of a maximal monotone operator in a uniformly convex anduniformly smooth real Banach space. The sequence of the algorithm is proved to converge strongly to a zeroof the maximal monotone map. In the case where the Banach space is a real Hilbert space, our theorem com-plements the celebrated proximal point algorithm of Martinet and Rockafellar. Furthermore, our convergencetheorem is applied to approximate a solution of a Hammerstein integral equation in our general setting. Finally,numerical experiments are presented to illustrate the convergence of our algorithm.


2009 ◽  
Vol 2009 ◽  
pp. 1-20 ◽  
Author(s):  
Somyot Plubtieng ◽  
Wanna Sriprad

We prove strong and weak convergence theorems for a new resolvent of maximal monotone operators in a Banach space and give an estimate of the convergence rate of the algorithm. Finally, we apply our convergence theorem to the convex minimization problem. The result present in this paper extend and improve the corresponding result of Ibaraki and Takahashi (2007), and Kim and Xu (2005).


2019 ◽  
Vol 52 (1) ◽  
pp. 274-282
Author(s):  
Behzad Djafari Rouhani ◽  
Mohsen Rahimi Piranfar

AbstractWe consider the following second order evolution equation modelling a nonlinear oscillator with damping$$\ddot{u} (t) + \gamma \dot u(t) + Au\left( t \right) = f\left( t \right),\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {{\rm{SEE}}} \right)$$where A is a maximal monotone and α-inverse strongly monotone operator in a real Hilbert space H. With suitable assumptions on γ and f(t) we show that A−1(0) ≠ ∅, if and only if (SEE) has a bounded solution and in this case we provide approximation results for elements of A−1(0) by proving weak and strong convergence theorems for solutions to (SEE) showing that the limit belongs to A−1(0). As a discrete version of (SEE), we consider the following second order difference equation$${u_{n + 1}} - {u_n} - {\alpha _n}\left( {{u_n} - {u_{n - 1}}} \right) + {\lambda _n}A{u_{n + 1}\ni} f\left( t \right),$$where A is assumed to be only maximal monotone (possibly multivalued). By using the results in [Djafari Rouhani B., Khatibzadeh H., On the proximal point algorithm, J. Optim. Theory Appl., 2008, 137, 411–417], we prove ergodic, weak and strong convergence theorems for the sequence un, and show that the limit is the asymptotic center of un and belongs to A−1(0). This again shows that A−1(0) ≠ ∅ if and only if un is bounded. Also these results solve an open problem raised in [Alvarez F., Attouch H., An inertial proximal method for maximal monotone operators via dicretization of a nonlinear oscillator with damping, Set Valued Anal., 2001, 9, 3–11], namely the study of the convergence results for the inexact inertial proximal algorithm. Our paper is motivated by the previous results in [Djafari Rouhani B., Asymptotic behaviour of quasi-autonomous dissipative systems in Hilbert spaces, J. Math. Anal. Appl., 1990, 147, 465–476; Djafari Rouhani B., Asymptotic behaviour of almost nonexpansive sequences in a Hilbert space, J. Math. Anal. Appl., 1990, 151, 226–235; Djafari Rouhani B., Khatibzadeh H., Asymptotic behavior of bounded solutions to some second order evolution systems, Rocky Mountain J. Math., 2010, 40, 1289–1311; Djafari Rouhani B., Khatibzadeh H., A strong convergence theorem for solutions to a nonhomogeneous second order evolution equation, J. Math. Anal. Appl., 2010, 363, 648–654; Djafari Rouhani B., Khatibzadeh H., Asymptotic behavior of bounded solutions to a class of second order nonhomogeneous evolution equations, Nonlinear Anal., 2009, 70, 4369–4376; Djafari Rouhani B., Khatibzadeh H., On the proximal point algorithm, J. Optim. Theory Appl., 2008, 137, 411–417] and significantly improves upon the results of [Attouch H., Maingé P. E., Asymptotic behavior of second-order dissipative evolution equations combining potential with non-potential effects, ESAIM Control Optim. Calc. Var., 2011, 17(3), 836–857], and [Alvarez F., Attouch H., An inertial proximal method for maximal monotone operators via dicretization of a nonlinear oscillator with damping, Set Valued Anal., 2001, 9, 3–11].


Author(s):  
Mujahid Abbas ◽  
Faik Gürsoy ◽  
Yusuf Ibrahim ◽  
Abdul Rahim Khan

We introduce a new algorithm to approximate a solution of split variational inclusion problems of multivalued maximal monotone operators in uniformly convex and uniformly smooth Banach spaces under the Bregman distance. A strong convergence theorem for the above problem is established and several important known results are deduced as corollaries to it. As application, we solve a split minimization problem and provide a numerical example to support better findings of our result.


2012 ◽  
Vol 2012 ◽  
pp. 1-21 ◽  
Author(s):  
Yaqin Wang

We introduce a new hybrid iterative scheme for finding a common element of the set of common fixed points of two countable families of relatively quasi-nonexpansive mappings, the set of the variational inequality, the set of solutions of the generalized mixed equilibrium problem, and zeros of maximal monotone operators in a Banach space. We obtain a strong convergence theorem for the sequences generated by this process in a 2-uniformly convex and uniformly smooth Banach space. The results obtained in this paper improve and extend the result of Zeng et al. (2010) and many others.


2021 ◽  
Vol 31 (2) ◽  
pp. 117-124

One of the major problems in the theory of maximal monotone operators is to find a point in the solution set Zer( ), set of zeros of maximal monotone mapping . The problem of finding a zero of a maximal monotone in real Hilbert space has been investigated by many researchers. Rockafellar considered the proximal point algorithm and proved the weak convergence of this algorithm with the maximal monotone operator. Güler gave an example showing that Rockafellar’s proximal point algorithm does not converge strongly in an infinite-dimensional Hilbert space. In this paper, we consider an explicit method that is strong convergence in an infinite-dimensional Hilbert space and a simple variant of the hybrid steepest-descent method, introduced by Yamada. The strong convergence of this method is proved under some mild conditions. Finally, we give an application for the optimization problem and present some numerical experiments to illustrate the effectiveness of the proposed algorithm.


Filomat ◽  
2017 ◽  
Vol 31 (15) ◽  
pp. 4673-4693
Author(s):  
Sara Timnak ◽  
Eskandar Naraghirad ◽  
Nawab Hussain

In this paper, using Bregman functions, we introduce a new Halpern-type iterative algorithm for finding common zeros of finitely many maximal monotone operators and obtain a strongly convergent iterative sequence to the common zeros of these operators in a reflexive Banach space. Furthermore, we study Halpern-type iterative schemes for finding common solutions of a finite system of equilibrium problems and null spaces of a -inverse strongly monotone mapping in a 2-uniformly convex Banach space. Some applications of our results to the solution of equations of Hammerstein-type are presented. Our scheme has an advantage that we do not use any projection of a point on the intersection of closed and convex sets which creates some difficulties in a practical calculation of the iterative sequence. So the simple construction of Halpern iteration provides more flexibility in defining the algorithm parameters which is important from the numerical implementation perspective. Presented results improve and generalize many known results in the current literature.


Sign in / Sign up

Export Citation Format

Share Document